Model-based Offline Reinforcement Learning with Local Misspecification

Kefan Dong*, Yannis Flet-Berliac*, Allen Nie*, Emma Brunskill

Stanford ENGINEERING

Computer Science

Offline policy learning: motivation

- There exists lots of historical data for many real-world decisionmaking problems
 - E.g., recommendation systems, personalized healthcare

• Can we take historical data and output better policies?

Figures from https://www.nvidia.com/en-us/glossary/data-science/recommendation-system/ https://global.colleaga.org/article/explaining-personalized-healthcare-0

Offline policy learning: main challenges

- Distribution mismatch: new policies generates different trajectories (data distribution), but we only have a fixed dataset
 - Especially with long horizons
- Bias-variance tradeoff: most off-policy estimators have to balance bias and variance
 - Especially when models are misspecified
 - More complicated for policy selection instead of policy evaluation
- We need theoretical guarantees in higher stakes domains (e.g., healthcare)

Existing works and limitations

- Importance-sampling estimators: minimal assumptions on the model, low data efficiency [Thomas et al., 2019]
- Offline RL: strong realizability assumptions, high data efficiency
 - E.g., an accurate model on *every* state [Xie & Jiang, 2021, Uehara & Sun, 2021, Voloshin et al., 2021]
- Can we make less assumptions and still have high data efficiency?
- This paper: leverage misspecified models (approximate parts of the state space)

Our insight: global realizability is not necessary

- For any fixed policy π , we only care about a subset of states
- Models with local realizability: exists an accurate model on states that may be *visited* by the policy π

Main results: offline policy optimization via locally realizable dynamics models

- 1. We design a model-based offline RL algorithm (MBLB) for policy optimization using locally realizable models.
 - Algorithmic insight: optimize the policy and dynamics together
 - Focus on the state-actions that visited by the current policy π
 - => Use different dynamics models for different policies
- 2. We prove a suboptimality upper bound for the learned policy in the finite sample regime.
- 3. We implement the MBLB algorithm on policy selection tasks in D4RL dataset and achieves competitive performance to existing results.

Offline policy learning: problem setup

- Infinite horizon MDPs with discount factor γ , ground-truth dynamics T^*
- Dataset $\mathcal{D} = \{(s_i, a_i, s_i')\}_{i=1,...,n}$ drawn from behavior distribution μ
- Reward r(s, a) is known
- Expected total reward

$$\eta(T^{\star},\pi) = \mathbb{E}_{a_t \sim \pi(s_t), s_{t+1} \sim T^{\star}(s_t, a_t)} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \right]$$

- Goal of the offline policy selection problem
 - Input: given a (small) policy class Π , the dataset ${\mathcal D}$
 - Output: the best policy in the policy class $\hat{\pi} = \operatorname{argmax}_{\pi \in \Pi} \eta(T^{\star}, \pi)$
- Assumptions: locally realizable model class ${\mathcal T}$ and value class ${\mathcal G}$

• Build a lower bound $lb(T, \pi)$ for the expected return of π on the ground-truth dynamics

Simulation lemma: (Kakade and Langford, 2002) $\eta(T,\pi) - \eta(T^{\star},\pi) = \frac{\gamma}{1-\gamma} \mathbb{E}_{(s,a)\sim\rho_T^{\pi}} \left[\mathbb{E}_{x'\sim T(s,a)} \left[V_{T^{\star}}^{\pi}(x') \right] - \mathbb{E}_{x'\sim T^{\star}(s,a)} \left[V_{T^{\star}}^{\pi}(x') \right] \right]$

T: learned dynamics; T^* : true dynamics

 ρ_T^{π} : state-action distribution of running π on dynamics model T $V_{T^{\star}}^{\pi}(x')$: expected total return of π starting from state x'

• Build a lower bound $lb(T, \pi)$ for the expected return of π on the ground-truth dynamics

Simulation lemma: (Kakade and Langford, 2002)

$$\eta(T,\pi) - \eta(T^{\star},\pi) = \frac{\gamma}{1-\gamma} \mathbb{E}_{(s,a)\sim\rho_T^{\pi}} \Big[\mathbb{E}_{x\prime\sim T(s,a)} \big[V_{T^{\star}}^{\pi}(x') \big] - \mathbb{E}_{x\prime\sim T^{\star}(s,a)} \big[V_{T^{\star}}^{\pi}(x') \big] \Big]$$

T: learned dynamics; T^* : true dynamics

 ρ_T^{π} : state-action distribution of running π on dynamics model T $V_{T^{\star}}^{\pi}(x')$: expected total return of π starting from state x'

• Build a lower bound $lb(T, \pi)$ for the expected return of π on the ground-truth dynamics

Simulation lemma: (Kakade and Langford, 2002)

$$\eta(T,\pi) - \eta(T^{\star},\pi) = \frac{\gamma}{1-\gamma} \mathbb{E}_{(s,a)\sim\rho_T^{\pi}} \left[\mathbb{E}_{x'\sim T(s,a)} \left[V_{T^{\star}}^{\pi}(x') \right] - \mathbb{E}_{x'\sim T^{\star}(s,a)} \left[V_{T^{\star}}^{\pi}(x') \right] \right]$$

• Build a lower bound $lb(T, \pi)$ for the expected return of π on the ground-truth dynamics

Simulation lemma: (Kakade and Langford, 2002)

$$\eta(T,\pi) - \eta(T^{\star},\pi) = \frac{\gamma}{1-\gamma} \mathbb{E}_{(s,a)\sim\rho_T^{\pi}} \Big[\mathbb{E}_{x'\sim T(s,a)} \big[V_{T^{\star}}^{\pi}(x') \big] - \mathbb{E}_{x'\sim T^{\star}(s,a)} \big[V_{T^{\star}}^{\pi}(x') \big] \Big]$$

$$= \frac{\gamma}{1-\gamma} \mathbb{E}_{(s,a,s')\sim\mathcal{D}} \left[\frac{\rho_T^{\pi}(s,a)}{\mu(s,a)} \left(\mathbb{E}_{x'\sim T(s,a)} \left[V_T^{\pi}(x') \right] - V_T^{\pi}(s') \right) \right]$$

• Build a lower bound $lb(T, \pi)$ for the expected return of π on the ground-truth dynamics

Simulation lemma: (Kakade and Langford, 2002)

$$\eta(T,\pi) - \eta(T^{\star},\pi) = \frac{\gamma}{1-\gamma} \mathbb{E}_{(s,a)\sim\rho_T^{\pi}} \Big[\mathbb{E}_{x'\sim T(s,a)} \big[V_{T^{\star}}^{\pi}(x') \big] - \mathbb{E}_{x'\sim T^{\star}(s,a)} \big[V_{T^{\star}}^{\pi}(x') \big] \Big]$$

$$= \frac{\gamma}{1-\gamma} \mathbb{E}_{(s,a,s')\sim\mathcal{D}} \left[\frac{\rho_T^{\pi}(s,a)}{\mu(s,a)} \left(\mathbb{E}_{x'\sim T(s,a)} \left[V_{T^{\star}}^{\pi}(x') \right] - V_{T^{\star}}^{\pi}(s') \right) \right]$$

• Build a lower bound $lb(T, \pi)$ for the expected return of π on the ground-truth dynamics

Simulation lemma: (Kakade and Langford, 2002)

$$\eta(T,\pi) - \eta(T^{\star},\pi) = \frac{\gamma}{1-\gamma} \mathbb{E}_{(s,a)\sim\rho_T^{\pi}} \left[\mathbb{E}_{x'\sim T(s,a)} \left[V_{T^{\star}}^{\pi}(x') \right] - \mathbb{E}_{x'\sim T^{\star}(s,a)} \left[V_{T^{\star}}^{\pi}(x') \right] \right]$$

$$= \frac{\gamma}{1-\gamma} \mathbb{E}_{(s,a,s')\sim\mathcal{D}} \left[\frac{\rho_T^{\pi}(s,a)}{\mu(s,a)} \left(\mathbb{E}_{x'\sim T(s,a)} \left[V_T^{\pi}(x') \right] - V_T^{\pi}(s') \right) \right]$$
$$\leq \frac{\gamma}{1-\gamma} \sup_{g \in \mathcal{G}} \left| \mathbb{E}_{(s,a,s')\sim\mathcal{D}} \left[\frac{\rho_T^{\pi}(s,a)}{\mu(s,a)} \left(\mathbb{E}_{x'\sim T(s,a)} [g(x')] - g(s') \right) \right] \right|$$

 \mathcal{G} : value function class

• Build a lower bound $lb(T, \pi)$ for the expected return of π on the ground-truth dynamics

Simulation lemma: (Kakade and Langford, 2002)

$$\eta(T,\pi) - \eta(T^{\star},\pi) = \frac{\gamma}{1-\gamma} \mathbb{E}_{(s,a)\sim\rho_T^{\pi}} \left[\mathbb{E}_{x'\sim T(s,a)} \left[V_{T^{\star}}^{\pi}(x') \right] - \mathbb{E}_{x'\sim T^{\star}(s,a)} \left[V_{T^{\star}}^{\pi}(x') \right] \right]$$

• Define the lower bound

$$\operatorname{lb}(T,\pi) \stackrel{\text{\tiny def}}{=} \eta(T,\pi) - \frac{1}{1-\gamma} \sup_{g \in \mathcal{G}} \left| \mathbb{E}_{(s,a,s') \sim \mathcal{D}} \left[\frac{\rho_T^{\pi}(s,a)}{\mu(s,a)} \left(\mathbb{E}_{x' \sim T(s,a)} [g(x')] - g(s') \right) \right] \right|$$

Algorithm (MBLB)

• Output $\hat{\pi} \leftarrow \operatorname{argmax}_{\pi \in \Pi} \operatorname{max}_{T \in \mathcal{T}} \operatorname{lb}(T, \pi)$

Safe policy improvement theorem

Theorem 4 (informal): The output of MBLB $\hat{\pi}$ satisfies $\eta(T^{\star}, \hat{\pi}) \ge \sup_{\pi \in \Pi} \eta(T^{\star}, \pi) - \frac{\epsilon_{\rho}(\pi)}{(1-\gamma)^3} - \tilde{O}(1/\sqrt{n})$

- The local misspecification error $\epsilon_{\rho}(\pi) = 0$ if a dynamics model $T \in \mathcal{T}$ is accurate state-actions that may be *visited* by the policy π
- Prior works typically require $\inf_{T \in \mathcal{T}} \sup_{s,a} \operatorname{dist}(T(s,a), T^*(s,a)) \leq \epsilon$

Implementation of MBLB

Algorithm (MBLB)

• Output $\hat{\pi} \leftarrow \operatorname{argmax}_{\pi \in \Pi} \operatorname{max}_{T \in \mathcal{T}} \operatorname{lb}(T, \pi)$

$$\operatorname{lb}(T,\pi) \stackrel{\text{\tiny def}}{=} \eta(T,\pi) - \frac{1}{1-\gamma} \sup_{g \in \mathcal{G}} \left| \mathbb{E}_{(s,a,s') \sim \mathcal{D}} \left[\frac{\rho_T^{\pi}(s,a)}{\mu(s,a)} \left(\mathbb{E}_{x' \sim T(s,a)} [g(x')] - g(s') \right) \right] \right|$$

- Computing $\rho_T^{\pi}(s, a)$: state-action distribution of running π on learned dynamics model T
 - rollout policy π on dynamics model T (doesn't require online interactions!)
 - estimate the distribution by normalizing flow
- Estimate μ using the dataset $\mathcal D$

Empirical evaluation: policy-selection on D4RL

- Dataset \mathcal{D} : 5 offline datasets from D4RL on halfcheetah and hopper
- Policy class Π and dynamics class \mathcal{T} :
 - Run a model-based offline RL algorithm (MOPO) with 5 different hyperparameters
 - Collect the learned policies and dynamics models

Empirical evaluation: policy-selection on D4RL

- We show the interquartile mean (IQM) of the learned policy [Agarwal et al., 2021]
 - i.e., discard the top & bottom 25% of the runs
- We compare with a model-based offline RL baseline (MOPO), and a prior work that requires global realizability (MML)

Summary

- Locally realizable models are enough for offline policy learning
- Algorithmic insight: optimize the policy and dynamics together
 - Focus on the state-actions visited by the current policy π
- Future works
- Compute ρ^π_T(s, a) more efficiently and differentiate through it
 => Learn the policy/dynamics model from scratch
- Link to the full paper:

Thank you for your attention!

References

- Xie & Jiang, 2021, Batch Value-function Approximation with Only Realizability
- Xie et al., 2021, Bellman-consistent Pessimism for Offline Reinforcement Learning
- Uehara & Sun, 2021, Pessimistic Model-based Offline Reinforcement Learning under Partial Coverage
- Voloshin et al., 2021, Minimax Model Learning
- Liu et al., 2020, Provably good batch off-policy reinforcement learning without great exploration
- Kakade and Langford, 2002, Approximately Optimal Approximate Reinforcement Learning
- Thomas et al., 2019, Preventing undesirable behavior of intelligent machines
- Agarwal et al., 2021, Deep reinforcement learning at the edge of the statistical precipice.