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Offline policy learning: motivation

• There exists lots of historical data for many real-world decision-
making problems
• E.g., recommendation systems, personalized healthcare

• Can we take historical data and output better policies?

2Figures from https://www.nvidia.com/en-us/glossary/data-science/recommendation-system/
https://global.colleaga.org/article/explaining-personalized-healthcare-0



Offline policy learning: main challenges

• Distribution mismatch: new policies generates different trajectories 
(data distribution), but we only have a fixed dataset
• Especially with long horizons

• Bias-variance tradeoff: most off-policy estimators have to balance 
bias and variance
• Especially when models are misspecified
• More complicated for policy selection instead of policy 

evaluation
• We need theoretical guarantees in higher stakes domains (e.g., 

healthcare)
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Existing works and limitations

• Importance-sampling estimators: minimal assumptions on the 
model, low data efficiency [Thomas et al., 2019]
• Offline RL: strong realizability assumptions, high data efficiency
• E.g., an accurate model on every state [Xie & Jiang, 2021, Uehara 

& Sun, 2021, Voloshin et al., 2021]
• Can we make less assumptions and still have high data efficiency?
• This paper: leverage misspecified models (approximate parts of the 

state space)
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Our insight: global realizability is not necessary

• For any fixed policy 𝜋, we only care about a subset of states
• Models with local realizability: exists an accurate model on states 

that may be visited by the policy 𝜋
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all possible states

trajectory of 𝜋

dynamics with local realizability



Main results: offline policy optimization via locally 
realizable dynamics models
1. We design a model-based offline RL algorithm (MBLB) for policy 

optimization using locally realizable models.
• Algorithmic insight: optimize the policy and dynamics together
• Focus on the state-actions that visited by the current policy 𝜋
• => Use different dynamics models for different policies

2. We prove a suboptimality upper bound for the learned policy in 
the finite sample regime.

3. We implement the MBLB algorithm on policy selection tasks in 
D4RL dataset and achieves competitive performance to existing 
results.
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Offline policy learning: problem setup

• Infinite horizon MDPs with discount factor 𝛾, ground-truth dynamics 
𝑇⋆

• Dataset 𝒟 = 𝑠", 𝑎", 𝑠"# "$%,…,( drawn from behavior distribution 𝜇
• Reward 𝑟(𝑠, 𝑎) is known
• Expected total reward 

𝜂 𝑇⋆, 𝜋 = 𝔼)!∼+ ,! ,,!"#∼-⋆(,!,)!) ∑0$1
2 𝛾0 𝑟(𝑠0, 𝑎0)

• Goal of the offline policy selection problem
• Input: given a (small) policy class Π, the dataset 𝒟
• Output: the best policy in the policy class 

1𝜋 = argmax+∈4 𝜂(𝑇⋆, 𝜋)

• Assumptions: locally realizable model class 𝒯 and value class 𝒢
7



Model-based pessimistic policy optimization

• Build a lower bound lb(𝑇, 𝜋) for the expected return of 𝜋 on the 
ground-truth dynamics 
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Simulation lemma: (Kakade and Langford, 2002)

𝜂 𝑇, 𝜋 − 𝜂 𝑇⋆, 𝜋 =
𝛾

1 − 𝛾
𝔼 ",$ ∼&!

" 𝔼'(∼) ",$ 𝑉)⋆
* 𝑥′ − 𝔼'(∼)⋆ ",$ 𝑉)⋆

* 𝑥′

𝑇:	learned dynamics; 𝑇⋆: true dynamics
𝜌-+ : state-action distribution of running 𝜋 on dynamics model 𝑇
𝑉-⋆
+ 𝑥′ : expected total return of 𝜋 starting from state 𝑥′
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𝒢: value function class
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Model-based pessimistic policy optimization

• Build a lower bound lb(𝑇, 𝜋) for the expected return of 𝜋 on the 
ground-truth dynamics

• Define the lower bound

lb 𝑇, 𝜋 ≝ 𝜂 𝑇, 𝜋 − ,
,-+

sup
0∈𝒢

𝔼 ",$,"( ∼𝒟
&!
" ",$
/ ",$

𝔼'(∼) ",$ 𝑔 𝑥′ − 𝑔 𝑠(
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Simulation lemma: (Kakade and Langford, 2002)

𝜂 𝑇, 𝜋 − 𝜂 𝑇⋆, 𝜋 =
𝛾

1 − 𝛾
𝔼 ",$ ∼&!

" 𝔼'(∼) ",$ 𝑉)⋆
* 𝑥′ − 𝔼'(∼)⋆ ",$ 𝑉)⋆

* 𝑥′

Algorithm (MBLB)
• Output 1𝜋 ← argmax+∈4max-∈𝒯lb(𝑇, 𝜋)



Safe policy improvement theorem
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Theorem 4 (informal): The output of MBLB 1𝜋 satisfies

𝜂 𝑇⋆, 1𝜋 ≥ sup
+∈4

𝜂 𝑇⋆, 𝜋 −
𝜖6 𝜋
1 − 𝛾 7 − I𝑂 1/ 𝑛

• The local misspecification error 𝜖6 𝜋 = 0 if a dynamics model 𝑇 ∈
𝒯 is accurate state-actions that may be visited by the policy 𝜋

• Prior works typically require inf
-∈𝒯

sup
,,)

dist 𝑇 𝑠, 𝑎 , 𝑇⋆ 𝑠, 𝑎 ≤ 𝜖



Implementation of MBLB

• Computing 𝜌-+ 𝑠, 𝑎 : state-action distribution of running 𝜋 on 
learned dynamics model 𝑇
• rollout policy 𝜋 on dynamics model 𝑇 (doesn’t require online 

interactions!)
• estimate the distribution by normalizing flow

• Estimate 𝜇 using the dataset 𝒟
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Algorithm (MBLB)
• Output 1𝜋 ← argmax+∈4max-∈𝒯lb(𝑇, 𝜋)

lb 𝑇, 𝜋 ≝ 𝜂 𝑇, 𝜋 − ,
,-+

sup
0∈𝒢

𝔼 ",$,"( ∼𝒟
&!
" ",$
/ ",$

𝔼'(∼) ",$ 𝑔 𝑥′ − 𝑔 𝑠(



Empirical evaluation: policy-selection on D4RL
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• Dataset 𝒟: 5 offline datasets from D4RL on halfcheetah and hopper
• Policy class Π and dynamics class 𝒯: 
• Run a model-based offline RL algorithm (MOPO) with 5 different 

hyperparameters
• Collect the learned policies and dynamics models

Figures from https://sites.google.com/view/d4rl-anonymous/



Empirical evaluation: policy-selection on D4RL

• We show the interquartile mean (IQM) of the learned policy 
[Agarwal et al., 2021]
• i.e., discard the top & bottom 25% of the runs

• We compare with a model-based offline RL baseline (MOPO), and a 
prior work that requires global realizability (MML)

18

MBLB (ours)



Summary
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• Locally realizable models are enough for offline policy learning
• Algorithmic insight: optimize the policy and dynamics together
• Focus on the state-actions visited by the current policy 𝜋

• Compute 𝜌-+ 𝑠, 𝑎 more efficiently and differentiate through it
• => Learn the policy/dynamics model from scratch

• Link to the full paper:

Thank you for your attention!

Future works
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