
Asymptotic Instance-Optimal Algorithms
for Interactive Decision Making

Kefan Dong, Tengyu Ma
Stanford University

1

• Many classical ML algorithms & analyses focus on worst-case instances
• An ideal algorithm should perform better on “easy” instances
• The error/regret guarantee should depend on the instance

Instance-dependent algorithms and analysis

instance-dependent
alg.

worst-case bound

Instances

error/regret

Instance-dependent algorithms and analysis (Cont’d)

• Notable examples:
• Bounds for multi-armed bandit / RL that depends on the gap

condition or the value of optimal policy
• Margin-based bounds for classification problems

• Challenge: how do we compare these bounds?

instance-dependent I

instance-dependent II

3

worst-case bound

Instances

error/regret

Simchowitz & Jamieson, 2019; Zanette & Brunskill, 2019

Instance-optimal algorithms

• Can one alg. outperform all other algorithms on every instance?
• Issue: an alg. can perfectly memorize one special instance and fail on all

other instances
• Impossible to beat every other algorithm

4

Instances

error/regret
Instance-optimal

worst-case bound

Instance-optimal algorithms in RL

• Can one alg. outperform all other reasonable algorithms on every
instance?
• Reasonable algorithms shouldn’t completely fail on any instance

• [Lai & Robbins, 85] for bandits/RL:
• reasonable := non-trivial regret on all instances

5

Instances

error/regret
Instance-optimal

worst-case bound

Consistent algorithms and instance-optimality

6

Instances

error/regret
Instance-optimal

worst-case bound

An algorithm is consistent if it achieves 𝑂(𝑛!) regret for every 𝑝 > 0 on
every instance

Upper bounds for
consistent algorithms

𝑂(𝑛!)

Consistent algorithms and instance-optimality

7

Instances

error/regret
Instance-optimal

worst-case bound
UCB: 𝑂(log 𝑛)

𝑂(𝑛!)

• Replacing 𝑂(𝑛!) to 𝑂 𝑛".$ in the def. only affects constant factor

Upper bounds for
consistent algorithms

An algorithm is consistent if it achieves 𝑂(𝑛!) regret for every 𝑝 > 0 on
every instance

An algorithm is instance-optimal if its regret is as good as every
consistent algorithm on every instance

Prior works

• We design instance-optimal algorithms for general interactive
decision making problems with finite actions (including
episodic MDPs)
• We derive the optimal rate of instance-optimal algorithms

8
Graves & Lai, 1997; Lai & Robbins, 1985; Lattimore & Szepesvari, 2017; Li et al., 2022; Tirinzoni et al., 2021

• Instance-optimal algorithms for multi-armed bandits, linear
bandits, contextual bandits, ergodic MDPs, etc.

This paper

Interactive decision making

• Includes RL, POMDP, contextual bandits, multi-armed bandits…
• E.g., episodic RL, 𝑜! = 𝑠", 𝑎", 𝑟", 𝑠#, 𝑎#, 𝑟#⋯ , 𝑠$, 𝑎$, 𝑟$

• An instance ó an environment (e.g., a MDP in RL)
• Goal: minimize regret

∑!%"& 𝑅 𝜋⋆ − 𝑅 𝜋!
• NB: the abstract view helps simplify the analysis

Foster, et al. The statistical complexity of interactive decision making, 2021
Figure from https://vitalflux.com/reinforcement-learning-real-world-examples/

decision 𝜋!

observation 𝑜!
reward 𝑅 𝑜!

repeat for 𝑛 times

9

Main contributions: an overview

• The exact leading term of the optimal asymptotic regret: 𝒞 𝑓 ln 𝑛
on every instance 𝑓

10

Theorem (lower bound): on every instance 𝑓, the regret of every
consistent algorithm must have

limsup
&→-

./0!,#
12 & ≥ 𝒞 𝑓 .

Theorem (upper bound): with mild conditions, there exists an
algorithm whose regret on every instance 𝑓 satisfies

limsup
&→-

./0!,#
12 & ≤ 𝒞 𝑓 .

• The first asymptotic instance-optimal algorithm for general
interactive decision making

Additional Notations

• Decision: 𝜋 ∈ Π (we assume Π is finite)

• Instance: 𝑓 ∈ ℱ
• 𝑓 𝜋 : the distribution of observations

• Reward: 𝑅3 𝜋
• Optimal decision: 𝜋⋆ 𝑓 ≝ argmax4∈6𝑅3(𝜋)

• Assumption: the optimal decision is unique for every 𝑓 ∈ ℱ

11

The complexity measure 𝒞 𝑓 : the intuition

12

• 𝑓: the true instance
• 𝑔: another instance in ℱ with a different optimal decision

Claim: every consistent algorithm must distinguish 𝑔 from 𝑓

• This is because sublinear regret means:
• on 𝑓, play 𝜋⋆(𝑓) for most of the time
• on 𝑔, play 𝜋⋆(𝑔) for most of the time

• Failing to distinguish 𝑓 and 𝑔 ⇒ Θ 𝑛 regret on 𝑓 or 𝑔
• Therefore, every consistent algorithm must distinguish 𝑓, 𝑔 with

prob. ≈ 1/𝑛

Distinguishability = Large KL divergence

13

• 𝑓: the true instance
• 𝑔: another instance in ℱ with a different optimal decision

Lemma [Chernoff, 59]: Given a sequence of decisions 𝜋", ⋯ , 𝜋7 and
corresponding observations 𝑜", ⋯ , 𝑜7, for any 𝛿 > 0, the following
statements are equivalent under mild assumptions:
1. There is an estimator L𝑓 that distinguishes 𝑓, 𝑔 in the sense that

Pr3 L𝑓 = 𝑓 ≥ 1 − 𝑜(1), Pr8 L𝑓 = 𝑓 < 𝛿
2. 𝔼3 ∑9%"7 KL 𝑓 𝜋9 ∥ 𝑔 𝜋9 > ln(1/𝛿)

• We need 𝛿 = S𝑂(1/𝑛), hence
𝔼3 ∑9%"7 KL 𝑓 𝜋9 ∥ 𝑔 𝜋9 ≥ ln 𝑛

𝑤4 ≝ 𝔼3 ∑9%"7 1 𝜋9 = 𝜋 : the unnormalized
“frequency” of decision 𝜋

∑4∈6𝑤4 KL 𝑓 𝜋 ∥ 𝑔 𝜋 =

The complexity measure 𝒞 𝑓

𝒞 𝑓, 𝑛 ≝ min
!∈ℝ!"

∑$∈%𝑤$ 𝑅& 𝜋⋆ 𝑓 − 𝑅& 𝜋

14

s. t. ∑$∈%𝑤$ KL 𝑓 𝜋 ∥ 𝑔 𝜋 ≥ 1, ∀𝑔 ∈ ℱ, 𝜋⋆ 𝑔 ≠ 𝜋⋆ 𝑓

𝑤 (≤ 𝑛

• The final complexity measure:
𝒞 𝑓 ≝ lim

&→-
𝒞 𝑓, 𝑛

• The constraint 𝑤 - ≤ 𝑛 is to ensure mathematical rigor, and it’s
possible that lim

&→-
𝒞 𝑓, 𝑛 ≠ 𝒞 𝑓,∞

• Find the frequency of decisions 𝑤 ∈ ℝ:6 that
• Minimize the regret
• Collect enough information to distinguish 𝑓 and 𝑔

The lower bound

• The proof is similar to prior works
• 𝒞 𝑓 recovers the instance-optimal bounds for multi-armed

bandits and linear bandits, and improves instance-dependent
bounds for tabular RL

15

Theorem (lower bound): on every instance 𝑓, the regret of every
consistent algorithm must have

limsup
&→-

./0!,#
12 & ≥ 𝒞 𝑓 .

Lai & Robbins, 1985; Lattimore & Szepesvari, 2017; Li et al., 2022; Tirinzoni et al., 2021

Instance-optimal algorithm via hypothesis
testing

16

• Our algorithm: collect samples with the best tradeoff between
• incurring minimal regret on 𝑓
• distinguishing 𝑔 from 𝑓 (hypothesis testing!)

• Essentially, we reduce the problem to hypothesis testing with
active data collection

Algorithm: Test-to-Commit (T2C)

• Step 1: Initialization
• Explore uniformly for 𝑜 ln 𝑛 steps and use MLE to get L𝑓

• Step 2: Identification
• Compute the best “frequency” 𝑤4 by solving 𝒞(L𝑓) and collect
Θ ln 𝑛 samples correspondingly
• Hypothesis testing: is L𝑓 the true instance?

• Step 3: Exploitation
• If L𝑓 passes the test: run 𝜋⋆ L𝑓 forever
• Otherwise: run UCB

• Inspired by [Lattimore & Szepesvari, 2017]

17

Goal: limsup
&→-

./0!,#
12 &

≤ 𝒞 𝑓 for every 𝑓 ∈ ℱ

The end of optimism? an asymptotic analysis of finite-armed linear bandits. Lattimore & Szepesvari, 2017

The key step: Identification
• The estimation L𝑓 in Step 1 is not accurate enough
• With only 𝑜 ln 𝑛 samples, failure prob. > 𝑛;<."

• We boost the failure prob. to 𝑛;" via hypothesis testing
• Solve 𝒞(L𝑓, ln ln 𝑛 "/?) to get 𝑤4 (the “frequency” of decisions)

and run decision 𝜋 for 𝑤4ln 𝑛 rounds
• Incur 𝒞 L𝑓 ln 𝑛 + 𝑜(ln 𝑛) regret
• Get enough information: ∑9%"7 KL(L𝑓 𝜋9 | 𝑔 𝜋9 ≥ ln 𝑛 for

every 𝑔 with a different optimal decision
• Run log-likelihood ratio test on L𝑓:

ℰ)& = 𝕀 ∀𝑔 ∈ ℱ and 𝜋⋆ 𝑔 ≠ 𝜋⋆ A𝑓 , ∑*+,- ln
)& $# .#
/ $# .#

≥ ln 𝑛

18

Sequential design of experiments, Chernoff, 1959

Guarantees (when ℱ is finite):
1. When A𝑓 = 𝑓, Pr ℰ)& ≥ 1 − 𝑜 1 ℱ = 1 − 𝑜 1
2. When 𝜋⋆ A𝑓 ≠ 𝜋⋆ 𝑓 , Pr ℰ)& < 1/𝑛

Regret analysis for finite hypothesis

19

Sequential design of experiments, Chernoff, 1959

Guarantees of Step 2:
1. When A𝑓 = 𝑓, Pr ℰ)& ≥ 1 − 𝑜 1
2. When 𝜋⋆ A𝑓 ≠ 𝜋⋆ 𝑓 , Pr ℰ)& < 1/𝑛

• In Step 1, L𝑓 = 𝑓 with probability at least 1 − 𝑂 ln 𝑛 ;" due to
convergence of MLE estimators
• When L𝑓 = 𝑓
• Step 2 has regret 𝒞 𝑓 ln 𝑛
• Step 3 has regret 𝑂(ln 𝑛) with probability at most 𝑜(1)

• When L𝑓 ≠ 𝑓
• Step 2 has regret 𝑂(ln 𝑛 ln ln 𝑛 "/?)
• Step 3 has regret 𝑂 𝑛 with probability at most 1/𝑛;

otherwise has regret at most 𝑂(ln 𝑛)
• Overall expected regret: 𝒞 𝑓 ln 𝑛 + 𝑜(ln 𝑛)

Asymptotic regret of T2C

• Instantiated on tabular episodic RL, T2C is the first instance-
optimal algorithm

20

Theorem (upper bound): with mild conditions, the regret of the T2C
algorithm on every instance 𝑓 satisfies

limsup
&→-

./0!,#
12 & ≤ 𝒞 𝑓 .

Extension to infinite hypothesis class

• In Step 1, we need to prove L𝑓 is close to 𝑓 (instead L𝑓 = 𝑓)
with probability 1 − 𝑜(1) in the sense that
• 𝜋⋆ L𝑓 = 𝜋⋆(𝑓)
• The solution of 𝒞(L𝑓) is close to that of 𝒞(𝑓)
• L𝑓 can pass the log-likelihood ratio test
• Essentially we need KL L𝑓 𝜋 ∥ 𝑔 𝜋 ≈ KL 𝑓 𝜋 ∥ 𝑔 𝜋 , ∀𝑔

• In Step 2, we need a small covering number for ℱ to prove uniform
concentration

21

Takeaways

• Instance-optimality can be achieved by hypothesis testing with
active data collection
• Key step: tradeoff between collecting information and

incurring regret
• The abstraction (interactive decision making) helps simplify the

analysis
• we only need some classic assumptions (e.g., uniform

convergence) on the distribution of observations

22

Remaining open questions

• Improving T2C
• Computational efficiency on concrete settings
• Instance-optimality for infinite decisions
• Non-asymptotic performance [Wagenmaker & Foster, 23]

• Instance-optimality for other questions: sample complexity
(instead of regret), offline RL, supervised learning
• How to define consistent algorithms?
• Does instance-optimal algorithm exist?

23

Thank you for your attention!

24

