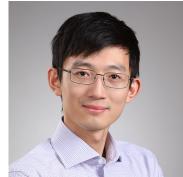
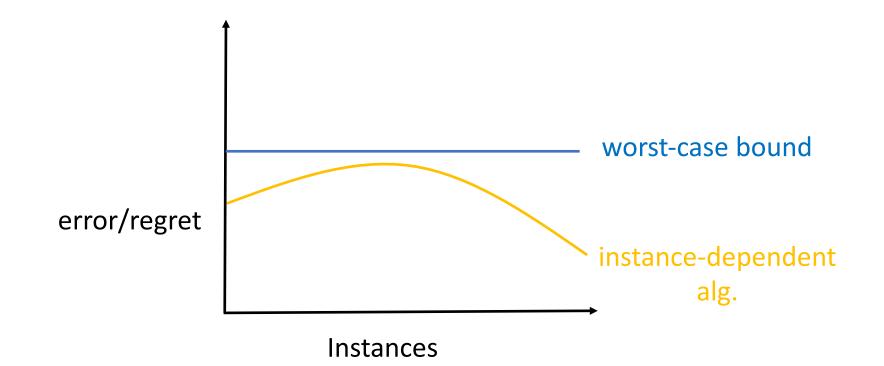
Asymptotic Instance-Optimal Algorithms for Interactive Decision Making

Kefan Dong, Tengyu Ma Stanford University



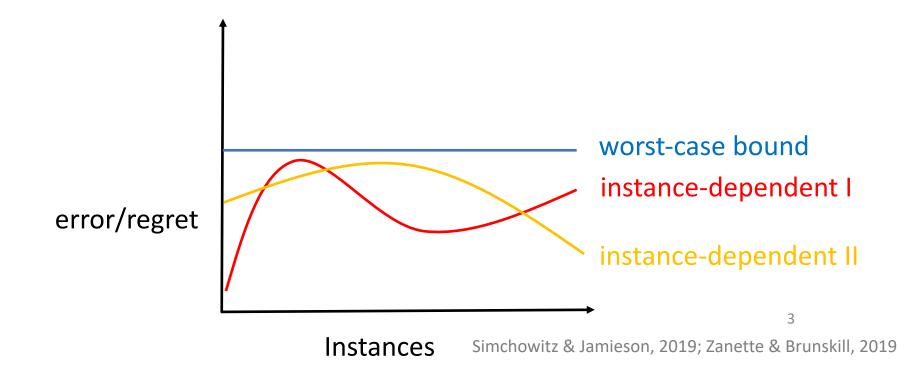
Instance-dependent algorithms and analysis

- Many classical ML algorithms & analyses focus on worst-case instances
- An ideal algorithm should perform better on "easy" instances
- The error/regret guarantee should depend on the instance



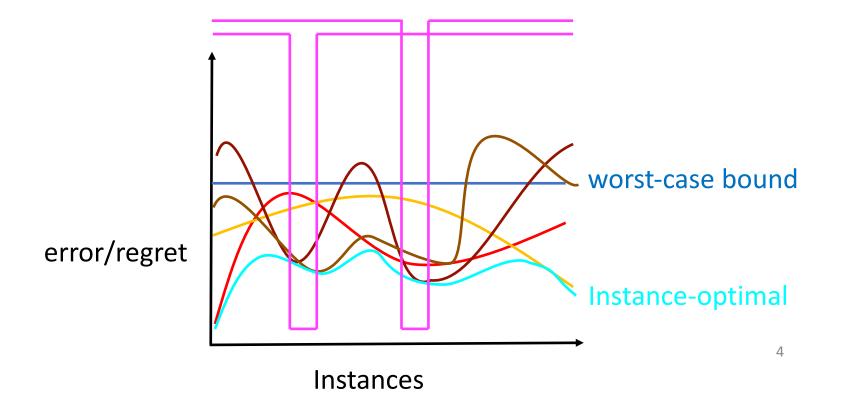
Instance-dependent algorithms and analysis (Cont'd)

- Notable examples:
 - Bounds for multi-armed bandit / RL that depends on the gap condition or the value of optimal policy
 - Margin-based bounds for classification problems
- Challenge: how do we compare these bounds?



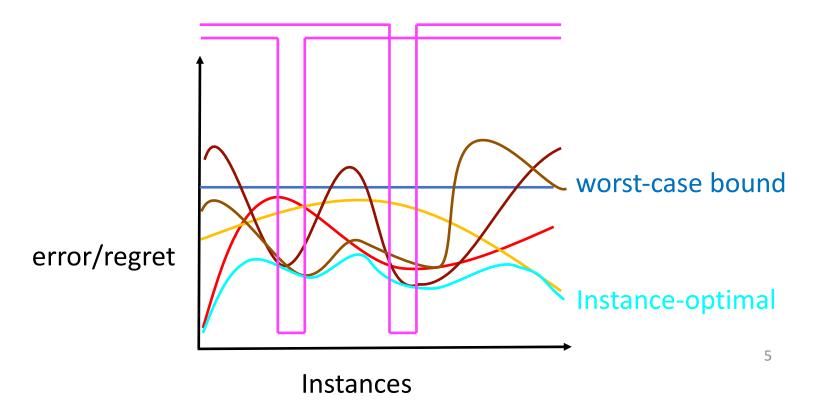
Instance-optimal algorithms

- Can one alg. outperform all other algorithms on every instance?
- Issue: an alg. can perfectly memorize one special instance and fail on all other instances
- Impossible to beat every other algorithm



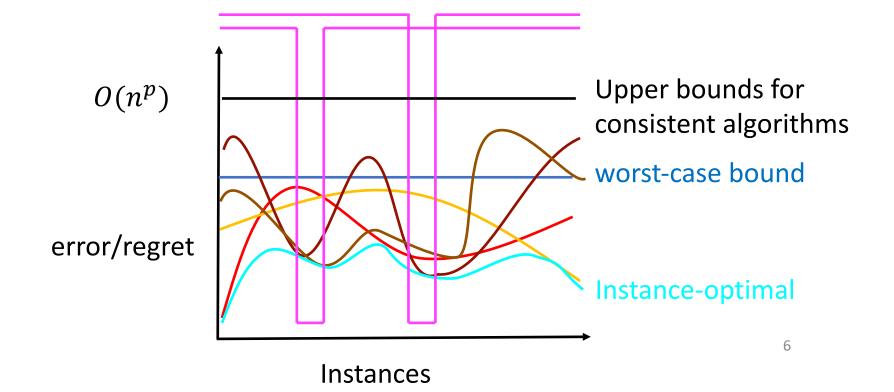
Instance-optimal algorithms in RL

- Can one alg. outperform all other reasonable algorithms on every instance?
 - Reasonable algorithms shouldn't completely fail on any instance
- [Lai & Robbins, 85] for bandits/RL:
 - reasonable := non-trivial regret on all instances



Consistent algorithms and instance-optimality

An algorithm is *consistent* if it achieves $O(n^p)$ regret for every p > 0 on every instance

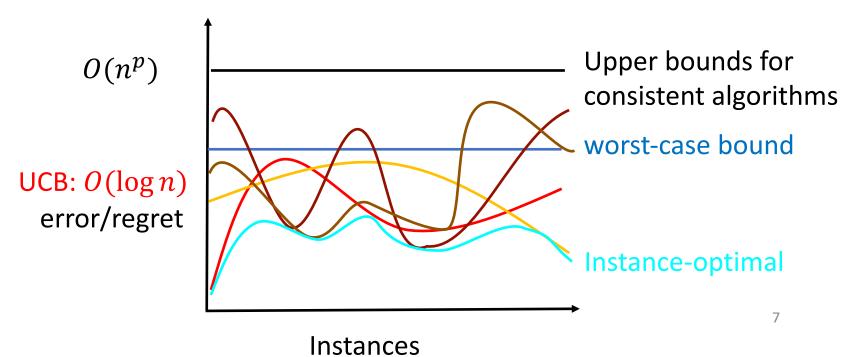


Consistent algorithms and instance-optimality

An algorithm is *consistent* if it achieves $O(n^p)$ regret for every p > 0 on every instance

An algorithm is instance-optimal if its regret is as good as *every* consistent algorithm on *every* instance

• Replacing $O(n^p)$ to $O(n^{0.9})$ in the def. only affects constant factor



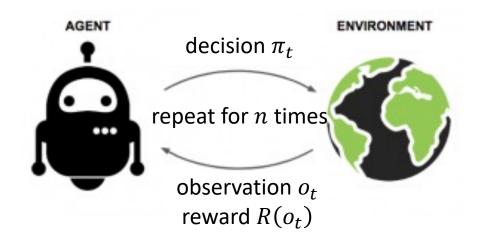
Prior works

• Instance-optimal algorithms for multi-armed bandits, linear bandits, contextual bandits, ergodic MDPs, etc.

This paper

- We design instance-optimal algorithms for general interactive decision making problems with finite actions (including episodic MDPs)
- We derive the optimal rate of instance-optimal algorithms

Interactive decision making



- Includes RL, POMDP, contextual bandits, multi-armed bandits...
 - E.g., episodic RL, $o_t = (s_1, a_1, r_1, s_2, a_2, r_2 \cdots, s_H, a_H, r_H)$
- An instance \Leftrightarrow an environment (e.g., a MDP in RL)
- Goal: minimize regret

$$\sum_{t=1}^n \left(R(\pi^\star) - R(\pi_t) \right)$$

• NB: the abstract view helps simplify the analysis

Foster, et al. The statistical complexity of interactive decision making, 2021 9 Figure from https://vitalflux.com/reinforcement-learning-real-world-examples/

Main contributions: an overview

• The exact leading term of the optimal asymptotic regret: $\mathcal{C}(f) {\ln n}$ on every instance f

Theorem (lower bound): on every instance f, the regret of every consistent algorithm must have

$$\limsup_{n\to\infty}\,\frac{\operatorname{Reg}_{f,n}}{\ln n}\geq \mathcal{C}(f).$$

Theorem (upper bound): with mild conditions, there exists an algorithm whose regret on every instance f satisfies $\lim_{n \to \infty} \frac{\operatorname{Reg}_{f,n}}{f} < C(f)$

$$\limsup_{n \to \infty} \frac{\operatorname{leg}_{f,n}}{\ln n} \leq \mathcal{C}(f).$$

• The first asymptotic instance-optimal algorithm for general interactive decision making

Additional Notations

- Decision: $\pi \in \Pi$ (we assume Π is finite)
- Instance: $f \in \mathcal{F}$
 - $f[\pi]$: the distribution of observations
- Reward: $R_f(\pi)$
- Optimal decision: $\pi^*(f) \stackrel{\text{\tiny def}}{=} \operatorname{argmax}_{\pi \in \Pi} R_f(\pi)$
- Assumption: the optimal decision is unique for every $f \in \mathcal{F}$

The complexity measure $\mathcal{C}(f)$: the intuition

- *f* : the true instance
- g: another instance in $\mathcal F$ with a different optimal decision

Claim: every consistent algorithm must distinguish g from f

- This is because sublinear regret means:
 - on f, play $\pi^{\star}(f)$ for most of the time
 - on g, play $\pi^{\star}(g)$ for most of the time
- Failing to distinguish f and $g \Rightarrow \Theta(n)$ regret on f or g
- Therefore, every consistent algorithm must distinguish f,g with prob. $\approx 1/n$

Distinguishability = Large KL divergence

- *f* : the true instance
- g: another instance in $\mathcal F$ with a different optimal decision

Lemma [Chernoff, 59]: Given a sequence of decisions π_1, \dots, π_m and corresponding observations o_1, \dots, o_m , for any $\delta > 0$, the following statements are equivalent under mild assumptions:

1. There is an estimator \hat{f} that distinguishes f, g in the sense that $\Pr_f(\hat{f} = f) \ge 1 - o(1), \qquad \Pr_g(\hat{f} = f) < \delta$ 2. $\mathbb{E}_f[\sum_{i=1}^m \operatorname{KL}(f[\pi_i] \parallel g[\pi_i])] > \ln(1/\delta)$

• We need $\delta = \tilde{O}(1/n)$, hence $\sum_{\pi \in \Pi} w_{\pi} \operatorname{KL}(f[\pi] \parallel g[\pi]) = \mathbb{E}_{f}[\sum_{i=1}^{m} \operatorname{KL}(f[\pi_{i}] \parallel g[\pi_{i}])] \ge \ln n$ $w_{\pi} \stackrel{\text{def}}{=} \mathbb{E}_{f}[\sum_{i=1}^{m} 1[\pi_{i} = \pi]] : \text{the unnormalized}$ "frequency" of decision π

The complexity measure $\mathcal{C}(f)$

- Find the frequency of decisions $w \in \mathbb{R}^{\Pi}_+$ that
 - Minimize the regret
 - Collect enough information to distinguish f and g

$$\begin{aligned} \mathcal{C}(f,n) &\stackrel{\text{def}}{=} \min_{w \in \mathbb{R}^{\Pi}_{+}} \sum_{\pi \in \Pi} w_{\pi} \left(R_{f} \left(\pi^{\star}(f) \right) - R_{f}(\pi) \right) \\ & \text{s.t.} \sum_{\pi \in \Pi} w_{\pi} \operatorname{KL}(f[\pi] \parallel g[\pi]) \geq 1, \ \forall g \in \mathcal{F}, \pi^{\star}(g) \neq \pi^{\star}(f) \\ & \|w\|_{\infty} \leq n \end{aligned}$$

• The final complexity measure:

$$\mathcal{C}(f) \stackrel{\text{\tiny def}}{=} \lim_{n \to \infty} \mathcal{C}(f, n)$$

• The constraint $||w||_{\infty} \le n$ is to ensure mathematical rigor, and it's possible that $\lim_{n\to\infty} C(f,n) \ne C(f,\infty)$

The lower bound

Theorem (lower bound): on every instance f, the regret of every consistent algorithm must have

$$\limsup_{n \to \infty} \frac{\operatorname{Reg}_{f,n}}{\ln n} \geq \mathcal{C}(f).$$

- The proof is similar to prior works
- C(f) recovers the instance-optimal bounds for multi-armed bandits and linear bandits, and improves instance-dependent bounds for tabular RL

Instance-optimal algorithm via hypothesis testing

- Our algorithm: collect samples with the best tradeoff between
 - incurring minimal regret on f
 - distinguishing g from f (hypothesis testing!)
- Essentially, we reduce the problem to *hypothesis testing* with active data collection

Algorithm: Test-to-Commit (T2C)

Goal:
$$\limsup_{n \to \infty} \frac{\operatorname{Reg}_{f,n}}{\ln n} \leq \mathcal{C}(f) \text{ for every } f \in \mathcal{F}$$

- Step 1: Initialization
 - Explore uniformly for $o(\ln n)$ steps and use MLE to get \hat{f}
- Step 2: Identification
 - Compute the best "frequency" w_{π} by solving $C(\hat{f})$ and collect $\Theta(\ln n)$ samples correspondingly
 - Hypothesis testing: is \hat{f} the true instance?
- Step 3: Exploitation
 - If \hat{f} passes the test: run $\pi^{\star}(\hat{f})$ forever
 - Otherwise: run UCB
- Inspired by [Lattimore & Szepesvari, 2017]

The key step: Identification

- The estimation \hat{f} in Step 1 is not accurate enough
 - With only $o(\ln n)$ samples, failure prob. $> n^{-0.1}$
- We boost the failure prob. to n^{-1} via hypothesis testing
- Solve $C(\hat{f}, (\ln \ln n)^{1/4})$ to get w_{π} (the "frequency" of decisions) and run decision π for $(w_{\pi} \ln n)$ rounds
 - Incur $C(\hat{f}) \ln n + o(\ln n)$ regret
 - Get enough information: $\sum_{i=1}^{m} \operatorname{KL}(\hat{f}[\pi_i]||g[\pi_i]) \ge \ln n$ for every g with a different optimal decision
- Run log-likelihood ratio test on \hat{f} :

$$\mathcal{E}^{\hat{f}} = \mathbb{I}\left[\forall g \in \mathcal{F} \text{ and } \pi^{\star}(g) \neq \pi^{\star}(\hat{f}), \sum_{i=1}^{m} \ln \frac{\hat{f}[\pi_i](o_i)}{g[\pi_i](o_i)} \ge \ln n\right]$$

Guarantees (when $\mathcal F$ is finite):

1. When $\hat{f} = f$, $\Pr(\mathcal{E}^{\hat{f}}) \ge 1 - o(1)|\mathcal{F}| = 1 - o(1)$

2. When
$$\pi^*(\hat{f}) \neq \pi^*(f)$$
, $\Pr(\mathcal{E}^{\hat{f}}) < 1/n$

18

Regret analysis for finite hypothesis

Guarantees of Step 2:

- 1. When $\hat{f} = f$, $\Pr(\mathcal{E}^{\hat{f}}) \ge 1 o(1)$
- 2. When $\pi^*(\hat{f}) \neq \pi^*(f)$, $\Pr(\mathcal{E}^{\hat{f}}) < 1/n$
- In Step 1, $\hat{f} = f$ with probability at least $1 O((\ln n)^{-1})$ due to convergence of MLE estimators
- When $\hat{f} = f$
 - Step 2 has regret $\mathcal{C}(f) \ln n$
 - Step 3 has regret $O(\ln n)$ with probability at most o(1)
- When $\hat{f} \neq f$
 - Step 2 has regret $O(\ln n (\ln \ln n)^{1/4})$
 - Step 3 has regret O(n) with probability at most 1/n; otherwise has regret at most O(ln n)
- Overall expected regret: $C(f) \ln n + o(\ln n)$

Asymptotic regret of T2C

Theorem (upper bound): with mild conditions, the regret of the T2C algorithm on every instance f satisfies $\lim_{k \to \infty} \frac{\operatorname{Reg}_{f,n}}{k} \leq \mathcal{C}(f)$

$$\limsup_{n\to\infty} \frac{\operatorname{Reg}_{f,n}}{\ln n} \leq \mathcal{C}(f).$$

 Instantiated on tabular episodic RL, T2C is the first instanceoptimal algorithm Extension to infinite hypothesis class

- In Step 1, we need to prove \hat{f} is close to f (instead $\hat{f} = f$) with probability 1 o(1) in the sense that
 - $\pi^{\star}(\hat{f}) = \pi^{\star}(f)$
 - The solution of $\mathcal{C}(\hat{f})$ is close to that of $\mathcal{C}(f)$
 - \hat{f} can pass the log-likelihood ratio test
 - Essentially we need $\operatorname{KL}(\hat{f}[\pi] \parallel g[\pi]) \approx \operatorname{KL}(f[\pi] \parallel g[\pi]), \forall g$
- In Step 2, we need a small covering number for ${\mathcal F}$ to prove uniform concentration

Takeaways

- Instance-optimality can be achieved by hypothesis testing with active data collection
 - Key step: tradeoff between collecting information and incurring regret
- The abstraction (interactive decision making) helps simplify the analysis
 - we only need some classic assumptions (e.g., uniform convergence) on the distribution of observations

Remaining open questions

- Improving T2C
 - Computational efficiency on concrete settings
 - Instance-optimality for infinite decisions
 - Non-asymptotic performance [Wagenmaker & Foster, 23]
- Instance-optimality for other questions: sample complexity (instead of regret), offline RL, supervised learning
 - How to define consistent algorithms?
 - Does instance-optimal algorithm exist?

Thank you for your attention!