Asymptotic Instance-Optimal Algorithms
for Interactive Decision Making

Kefan Dong, Tengyu Ma
Stanford University

Instance-dependent algorithms and analysis

* Many classical ML algorithms & analyses focus on worst-case instances

* Anideal algorithm should perform better on “easy” instances

* The error/regret guarantee should depend on the instance

error/regret

Instances

worst-case bound

Instance-dependent algorithms and analysis (Cont’d)

* Notable examples:

e Bounds for multi-armed bandit / RL that depends on the gap
condition or the value of optimal policy

* Margin-based bounds for classification problems

* Challenge: how do we compare these bounds?

worst-case bound

/\\// instance-dependent |
error/regret /

—
>

3
Instances Simchowitz & Jamieson, 2019; Zanette & Brunskill, 2019

Instance-optimal algorithms

e Can one alg. outperform all other algorithms on every instance?

* |ssue: an alg. can perfectly memorize one special instance and fail on all
other instances

* Impossible to beat every other algorithm

o

/\ /\ m worst-case bound

— -
/
error/regret

Instances

Instance-optimal algorithms in RL

* Can one alg. outperform all other reasonable algorithms on every
instance?

* Reasonable algorithms shouldn’t completely fail on any instance

* [Lai & Robbins, 85] for bandits/RL:
* reasonable := non-trivial regret on all instances

o

/\ /\ [y worst-case bound

— -
/
error/regret

Instances

Consistent algorithms and instance-optimality

An algorithm is consistent if it achieves O (nP) regret for every p > 0 on
every instance

o

0(nP) Upper bounds for
consistent algorithms

/\ /\ m worst-case bound

error/regret ,&K%

Instances

Consistent algorithms and instance-optimality

An algorithm is consistent if it achieves O (nP) regret for every p > 0 on
every instance

An algorithm is instance-optimal if its regret is as good as every
consistent algorithm on every instance

e Replacing 0(nP) to 0(n%?) in the def. only affects constant factor
|
0(nP) Upper bounds for
consistent algorithms
,\ N\ m worst-case bound

-

-

UCB: O(logn)
error/regret

Instances

Prior works

* Instance-optimal algorithms for multi-armed bandits, linear
bandits, contextual bandits, ergodic MDPs, etc.

This paper

* We design instance-optimal algorithms for general interactive
decision making problems with finite actions (including
episodic MDPs)

* We derive the optimal rate of instance-optimal algorithms

8
Graves & Lai, 1997; Lai & Robbins, 1985; Lattimore & Szepesvari, 2017; Li et al., 2022; Tirinzoni et al., 2021

Interactive decision making

AGENT ENVIRONMENT
decision 1,

\
repeat forn tlmes
_/

observatlon O¢
reward R(o;)

Includes RL, POMDP, contextual bandits, multi-armed bandits...

 E.g., episodicRL, 0; = (51,a1,71,S,a,15 ***, Sy, Ay, i)
An instance <> an environment (e.g., a MDP in RL)
Goal: minimize regret
?zl(R(ﬂ*) — R(ﬂt))

NB: the abstract view helps simplify the analysis

Foster, et al. The statistical complexity of interactive decision making, 2021
Figure from https://vitalflux.com/reinforcement-learning-real-world-examples/

9

Main contributions: an overview

* The exact leading term of the optimal asymptotic regret: C(f)Inn
on every instance f

Theorem (lower bound): on every instance f, the regret of every

consistent algorithm must have
Re fn

> C(f).

limsup

N—00 Inn

Theorem (upper bound): with mild conditions, there exists an
algorithm whose regret on every instance f satisfies

limsup Re8im < ().

n—>0o ln

* The first asymptotic instance-optimal algorithm for general
interactive decision making

10

Additional Notations

Decision: ™ € Il (we assume Il is finite)

Instance: f € F
 f|m]: the distribution of observations

Reward: R¢ (1)

Optimal decision: T*(f) = argmaxenRs (1)

Assumption: the optimal decision is unique for every f € F

The complexity measure C(f): the intuition

* f:the trueinstance

* g: another instance in F with a different optimal decision

Claim: every consistent algorithm must distinguish g from f

* This is because sublinear regret means:
* on f, play m*(f) for most of the time
* on g, play m*(g) for most of the time
* Failing to distinguish f and g = 0(n) regreton f or g

* Therefore, every consistent algorithm must distinguish f, g with
prob. = 1/n

Distinguishability = Large KL divergence

* f:the trueinstance

* g: another instance in F with a different optimal decision

Lemma [Chernoff, 59]: Given a sequence of decisions 4, -+, 1T,,, and
corresponding observations 04, **+, 0., for any 6 > 0, the following
statements are equivalent under mild assumptions:

1. There is an estimator f that distinguishes f, g in the sense that
Prf(f = f) >1-—0(1), Prg(f = f) <90
2. Ef[XZ1 KL(f[m;] Il glm;]D] > In(1/6)

* We need § = 0(1/n), hence
Znel‘[wy KL(f[x] | glm]) = Ef[?;1 KL(f ;] II glm;])] = Inn

Wr & E¢[Yi2 1[m; = m]] : the unnormalized
“frequency” of decision

The complexity measure C(f)

* Find the frequency of decisions w € R that
* Minimize the regret
* Collect enough information to distinguish f and g

C(f,n) = min, Srenwx (Re(7* () = Ry(m))
s.t. XpenWe KL(f[] Il g[n]) = 1, Vg € F,n*(g) # n*(f)

Iwlle <

* The final complexity measure:
C(f) = limC(f,n)
Nn—o>00

* The constraint ||w||, < n is to ensure mathematical rigor, and it’s
possible that lim C(f,n) # C(f,)
Nn—o>00

The lower bound

Theorem (lower bound): on every instance f, the regret of every

consistent algorithm must have
Re fn

> C(f).

limsup

N—00 Inn

* The proof is similar to prior works

* C(f) recovers the instance-optimal bounds for multi-armed
bandits and linear bandits, and improves instance-dependent
bounds for tabular RL

15
Lai & Robbins, 1985; Lattimore & Szepesvari, 2017; Li et al., 2022; Tirinzoni et al., 2021

Instance-optimal algorithm via hypothesis
testing

* Our algorithm: collect samples with the best tradeoff between
* incurring minimal regret on f
* distinguishing g from f (hypothesis testing!)

* Essentially, we reduce the problem to hypothesis testing with
active data collection

Algorithm: Test-to-Commit (T2C)

Regrn C(f) forevery f € F

Goal: limsup — ==

n—>0co

Step 1: Initialization
 Explore uniformly for o(In n) steps and use MLE to get f

Step 2: Identification

* Compute the best “frequency” w,; by solving C(f) and collect
O®(In n) samples correspondingly

* Hypothesis testing: is f the true instance?

Step 3: Exploitation
* If f passes the test: run n*(f) forever
* Otherwise: run UCB

Inspired by [Lattimore & Szepesvari, 2017]

17
The end of optimism? an asymptotic analysis of finite-armed linear bandits. Lattimore & Szepesvari, 2017

The key step: Identification

* The estimation f in Step 1 is not accurate enough

 With only o(In n) samples, failure prob. > n~%
1

1

* We boost the failure prob. to n™" via hypothesis testing

* Solve C(f, (In In n)/%) to get w,, (the “frequency” of decisions)
and run decision 7 for (w,In n) rounds

* Incur C“'(f)ln n + o(In n) regret

» Get enough information: Y1, KL(f [;]|lg[r;]) = Inn for
every g with a different optimal decision

* Run log-likelihood ratio test on f:

f _ * x(F m f[n'i](oi)
gl = H[Vg € Fandn*(g) # n*(f), X%, In alm)o) > lnn]

Guarantees (when F is finite):
1. Whenf =f,Pr(ef)=1-0()|F|=1-0(1)
2. Whenn*(f) # n*(f), Pr(Ef) <1/n 18

Sequential design of experiments, Chernoff, 1959

Regret analysis for finite hypothesis

Guarantees of Step 2:
1. Whenf=F,Pr(¢/)>1-0(1)
2. Whenn*(f) # n*(f), Pr(Ef) <1/n

In Step 1, f = f with probability at least 1 — O((Inn)™1) due to
convergence of MLE estimators
When f = f

* Step 2 hasregret C(f) Inn

* Step 3 has regret O (In n) with probability at most 0(1)

When f # f
e Step 2 has regret O(In n (Inlnn)/%)

* Step 3 has regret O(n) with probability at most 1/n;
otherwise has regret at most O(In n)

Overall expected regret: C(f)Inn + o(In n)

19

Sequential design of experiments, Chernoff, 1959

Asymptotic regret of T2C

Theorem (upper bound): with mild conditions, the regret of the T2C
algorithm on every instance f satisfies

limsup Re&/n c(f).

N—00 Inn

* Instantiated on tabular episodic RL, T2C is the first instance-
optimal algorithm

20

Extension to infinite hypothesis class

* In Step 1, we need to prove f is close to f (instead f = f)
with probability 1 — o(1) in the sense that

- w*(f) = 7 (f)
* The solution of C(f) is close to that of C(f)
. f can pass the log-likelihood ratio test

 Essentially we need KL(f[n] I g[n]) ~ KL(f|x] Il g|r]), Vg

* In Step 2, we need a small covering number for F to prove uniform
concentration

Takeaways

* Instance-optimality can be achieved by hypothesis testing with
active data collection

* Key step: tradeoff between collecting information and
incurring regret
* The abstraction (interactive decision making) helps simplify the
analysis

e we only need some classic assumptions (e.g., uniform
convergence) on the distribution of observations

Remaining open questions

* Improving T2C

* Computational efficiency on concrete settings

* Instance-optimality for infinite decisions

* Non-asymptotic performance [Wagenmaker & Foster, 23]
* Instance-optimality for other questions: sample complexity

(instead of regret), offline RL, supervised learning
* How to define consistent algorithms?
e Does instance-optimal algorithm exist?

Thank you for your attention!

24

