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Toward a Theory for Deep RL



Existing RL theory cannot apply to Neural Nets

• None of these give polynomial sample complexities for even one-layer NNs.

Du, Simon S., et al. "Bilinear Classes: A Structural Framework for Provable Generalization in RL."



Neural Net Bandit: A Simplification

• Reward function 𝜂(𝜃, 𝑎)
• 𝜃 ∈ Θ: model parameter 
• 𝑎 ∈ 𝒜: continuous action

• Linear bandit: 𝜂 𝜃, 𝑎 = 𝜃!𝑎
• Neural net bandit: 𝜂 𝜃, 𝑎 = NN" 𝑎
• Realizable and deterministic reward setting:  
• Agent observes ground-truth reward 𝜂(𝜃⋆, 𝑎) after playing action 𝑎

• Goal: finding the best action
𝑎⋆ = argmax$∈𝒜 𝜂(𝜃⋆, 𝑎)



• Θ,𝒜: unit ℓ'-ball	in	ℝ(

• 𝜂 𝜃, 𝑎 = relu 𝜃!𝑎 − 0.9 , 𝑎⋆= argmax
||$||!*+

relu 𝜃⋆!𝑎 − 0.9 = 𝜃⋆

Neural Net Bandit is Statistically Hard!

𝑎 = 𝜃⋆
region with nonzero reward 

{𝑎: 𝜃⋆!𝑎 ≥ 0.9}
exp(−𝑑) prob. mass

flat region

needle in a haystack!

𝑎"

𝜂

𝑎#



• Θ,𝒜: unit ℓ'-ball	in	ℝ(

• 𝜂 𝜃, 𝑎 = relu 𝜃!𝑎 − 0.9 '

Neural Net Bandit is Statistically Hard!

smoothed version



𝜂 (𝜃, 𝛽), 𝑎 = 𝜃!𝑎 + 20 ⋅ relu(𝛽! 𝑎 − 0.9)

Neural Net Bandit is Statistically Hard!

𝛽⋆
𝜃⋆

global maximumlocal maximum
• Convergence to a global 

maximum is generally 
statistically intractable

• Existing RL theory cannot 
apply to NNs because 
they aim for global 
maximum

needle in a haystack!

random actions 
can learn the 

linear part 



A New Paradigm for Bandit/RL

1. Convergences to local maxima for general instances

2. Analysis of the landscape of the true reward 𝜂(𝜃⋆,⋅)

This talk



Main Results

• Theorem (informal): Under Lipschitz assumptions on 𝜂, there exists an algorithm 
that converges to a 𝜖-approximate local maxima in J𝑂 𝑅 Θ 𝜖12 .

• Similar results for nonlinear RL (with many more assumptions and stochastic 
policies.)

measures hardness of online 
learning w.r.t. model class



Baseline: Zero-order Optimization for Bandit

• True reward 𝑓 𝑎 = 𝜂 𝜃⋆, 𝑎
• Zero-order optimization:
• estimate gradient ∇𝑓 𝑎 by finite difference

For 𝜉 ∼ 𝒩 0, 𝐼 and  𝜖 > 0,
1
𝜖
𝔼 𝜉 𝑓 𝑎 + 𝜖𝜉 − 𝑓 𝑎 ≈ 𝔼 𝜉𝜉!∇𝑓 𝑎 = ∇𝑓 𝑎

• Ω 𝑑 sample complexity

• Our key idea: leverage model extrapolation



Model-based UCB Does Even Not Converge To 
Local Max

𝑎3, 𝜃3 = argmax
$∈𝒜,"∈5"

𝜂(𝜃, 𝑎)

𝜂 (𝜃, 𝛽), 𝑎 = 𝜃!𝑎 + 20 ⋅ relu(𝛽! 𝑎 − 0.9)

𝛽⋆
𝜃⋆

• Θ3 pins down 𝜃⋆ but has 
no clue about 𝛽⋆

• UCB keeps guessing 𝛽3
• and choses 𝑎3 = 𝛽3

• UCB over-explores and doesn’t converge in polynomial steps
• In partice, deep RL methods with optimism also over-explore

confidence region

𝜃$ = 𝜃⋆
𝛽$

past actions

𝑎$

𝜂( 𝜃", 𝛽" ,⋅)

𝑎$



Reviewing the Analysis of UCB

1. Optimization (high virtual reward): 
by optimism, 𝜂 𝜃3, 𝑎3 ≥ 𝜂(𝜃⋆, 𝑎⋆)

2. Extrapolation (in average): 

∑36+7 𝜂 𝜃3, 𝑎3 − 𝜂 𝜃⋆, 𝑎3
' ≤ dim8(Θ) ⋅ 𝑇

• 1 + 2 ⇒ 𝜂 𝜃⋆, 𝑎3 → 𝜂(𝜃⋆, 𝑎⋆)
• Step 2 fails for neural net models because dim8(Θ) ≈ exp(𝑑)

Eluder dimension

This result was independently proven in Li, Gene, Pritish Kamath, Dylan J. Foster, and Nathan Srebro. "Eluder Dimension and Generalized Rank."



Re-Prioritizing the Two Steps

1. Extrapolation by online learning (OL) oracles:

𝔼 ∑36+7 𝜂 𝜃3, 𝑎3 − 𝜂 𝜃⋆, 𝑎3
' ≤ 𝑅 Θ T polylog T

Sequential Rademacher Complexity
[Rakhlin-Sridharan-Tewari’15]

Rakhlin, Alexander, Karthik Sridharan, and Ambuj Tewari. "Online learning via sequential complexities.” 2015.

• For finite hypothesis Θ, 𝑅 Θ = log Θ
• For neural nets: 

𝑅 Θ = poly 𝑑 vs.    Eluder dim = exp(𝑑)

OL oracle outputs a distribution of 𝜃"

or the weight norm



OL Oracle Extrapolates Optimally

UCB: loss ≫ 0 Ground truth

Extrapolation error:  ∑36+7 𝜂 𝜃3, 𝑎3 − 𝜂 𝜃⋆, 𝑎3
'

OL oracle: loss = 0
(for most of the times)

𝜂 𝜃", 𝑎" 𝜂 𝜃", 𝑎" = 𝜂 𝜃⋆, 𝑎"

𝜂 𝜃⋆, 𝑎$
loss ≫ 0



Re-Prioritizing the Two Steps

1. Extrapolation by online learning (OL) oracles 

𝔼 ∑36+7 𝜂 𝜃3, 𝑎3 − 𝜂 𝜃⋆, 𝑎3
' ≤ 𝑅 Θ 𝑇 polylog T

2. High virtual reward: 
best attempt: 𝑎3 = argmax

$∈𝒜
𝔼 𝜂(𝜃3, 𝑎)

𝜂(𝜃⋆,⋅)

𝑎!
𝑎!"#

𝑎#

getting stuck L

(lack of optimism)

𝑎

𝜂 𝜃"$%,⋅



Re-Prioritizing the Two Steps

𝑎

𝑎"

UCB will pick optimistic models

L

𝜂(𝜃⋆,⋅)

𝜂 𝜃"$%,⋅

but over explores



Embrace Virtual Curvature

• Need the online learner to work harder to guarantee an increasing virtual reward
• Estimating the curvature: learn 𝜃3 such that

1. 𝜂 𝜃3, 𝑎3 ≈ 𝜂(𝜃⋆, 𝑎3)
2. ∇$𝜂 𝜃3, 𝑎3 ≈ ∇$𝜂(𝜃⋆, 𝑎3)
3. ∇$'𝜂 𝜃3, 𝑎3 ≈ ∇$'𝜂(𝜃⋆, 𝑎3) 𝜂(𝜃⋆,⋅)

𝑎

𝑎"

𝑎"$%
gradient is correct?

increasing virtual reward J

LJ



Virtual Improvements With Curvature Estimates

• Assume 𝜂(𝜃,⋅) is smooth (with bounded 2nd derivative)
• 𝜂 𝜃⋆, 𝑎39+ ≈ 𝔼""#$ 𝜂 𝜃39+, 𝑎39+

≥ 𝔼""#$ 𝜂 𝜃39+, 𝑎3 + Ω(||𝔼""#$ ∇𝜂 𝜃39+, 𝑎3 ||'')
≈ 𝜂 𝜃⋆, 𝑎3 + Ω(||∇𝜂 𝜃⋆, 𝑎3 ||'')

OL guarantee

“descent lemma”:

max
&

𝑓 𝑎 ≥ 𝑓 𝑎' + Ω(||∇𝑓 𝑎' ||(()

𝜂(𝜃⋆,⋅)

𝑎

𝑎"

𝑎"$%
gradient is correct

increasing virtual reward J



Virtual Improvements With Curvature Estimates

• Consider online learning problem with the idealized "ℓ!
"ℓ! 𝜃 = 𝜂 𝜃, 𝑎! − 𝜂 𝜃⋆, 𝑎!

% + 𝜂 𝜃, 𝑎!"# − 𝜂 𝜃⋆, 𝑎!"#
%

+||∇𝜂 𝜃, 𝑎!"# − ∇𝜂 𝜃⋆, 𝑎!"# ||%%

• ViOL (Virtual Ascent with Online Model Learner)
1. Use OL to minimize losses "ℓ! (assuming "ℓ! is accessible) and get a distribution of 𝜃!
2. Take 𝑎! = argmax& 𝔼'%[𝜂(𝜃! , 𝑎)]

Lemma: If online learning for "ℓ! has regret
𝔼 ∑!(#) "ℓ! 𝜃! −min

'
∑!(#) "ℓ! 𝜃 = 𝔼 ∑!(#) "ℓ! 𝜃! = 𝑜(𝑇)

Then 𝑎! converges to a critical point of the reward 𝜂(𝜃⋆,⋅)



Learning Gradients With Model Extrapolation 

• ||∇𝜂 𝜃, 𝑎 − ∇𝜂 𝜃⋆, 𝑎 ||'' = 𝔼:[ ∇𝜂 𝜃, 𝑎 − ∇𝜂 𝜃⋆, 𝑎 , 𝑢 ']
where 𝑢 ∼ 𝒩(0, 𝐼)
• Directional gradient ∇𝜂 𝜃⋆, 𝑎 , 𝑢 can be computed by two actions

∇𝜂 𝜃⋆, 𝑎 , 𝑢 ≈
𝜂 𝜃⋆, 𝑎 + 𝛼𝑢 − 𝜂 𝜃⋆, 𝑎

𝛼
𝛼 → 0

• Similarly to Johnson–Lindenstrauss, it requires complexity(Θ) samples of 𝑢.
• Zero order optimization requires Ω 𝑑 samples.

"ℓ! 𝜃 = 𝜂 𝜃, 𝑎! − 𝜂 𝜃⋆, 𝑎!
% + 𝜂 𝜃, 𝑎!"# − 𝜂 𝜃⋆, 𝑎!"#

%

+||∇𝜂 𝜃, 𝑎!"# − ∇𝜂 𝜃⋆, 𝑎!"# ||%%

not observed



ℓ3 𝜃 = 𝜂 𝜃, 𝑎3 − 𝜂 𝜃⋆, 𝑎3
' + 𝜂 𝜃, 𝑎31+ − 𝜂 𝜃⋆, 𝑎31+

'

+ ∇𝜂 𝜃, 𝑎31+ − ∇𝜂 𝜃⋆, 𝑎31+ , 𝑢3 '

• Theorem (informal): Under Lipschitz assumptions on 𝜂, ViOL converges to a 𝜖-
approximate local maxima in J𝑂 𝑅 Θ 𝜖12 .

• ViOL (Virtual Ascent with Online Model Learner)
1. Sample 𝑢3 ∼ 𝒩 0, 𝐼
2. Use OL to minimize losses ℓ3 and get a distribution of  𝜃3
3. Take 𝑎3 = argmax$ 𝔼""[𝜂(𝜃3, 𝑎)]

Algorithm and Theorem



Instantiations

• Linear bandit with structured model family: 𝜂 𝜃, 𝑎 = 𝜃!𝑎
• Θ is finite: poly(log |Θ|) sample complexity 
• Θ contains 𝑠-sparse vectors: poly(𝑠, log 𝑑) sample complexity
• local maximum are global because 𝜂 𝜃⋆,⋅ is concave. 
• only hold for deterministic reward

• Neural net bandit: 𝜂 𝑊, 𝑎 = 𝑤'!𝜎(𝑊+𝑎)
• assume 𝑂(1) norms bounds on ||𝑤'||+, 𝑊+ ;→;
• 𝑅 𝑊 ≤ J𝑂 1
• sample complexity for local max = J𝑂(1)
• Local maximum are global for input-concave neural nets



First-cut Extension to RL

RL Bandit with Continous Actions
Dynamics 𝑇" Model parameter 𝜃

Policy 𝜋= Action 𝑎

Total return 𝜂 𝑇", 𝜋= Reward function 𝜂 𝜃, 𝑎

• Caveat: { 𝜂 𝑇",⋅ : 𝜃 ∈ Θ} has high complexity
• A result for stochastic policies (with many Lipschitz conditions)

𝜂 𝜃, 𝜓 − 𝜂 𝜃⋆, 𝜓 ' ≲ 𝔼>,$∼7%⋆ ,@' 𝑇" 𝑠, 𝑎 − 𝑇"⋆(𝑠, 𝑎) '

∇𝜂 𝜃, 𝜓 − ∇𝜂 𝜃⋆, 𝜓 ' ≲ 𝔼>,$∼7%⋆ ,@'[ 𝑇" 𝑠, 𝑎 − 𝑇"⋆(𝑠, 𝑎) ']
• Summary: online learning 𝑇" implies predicting the curvature of 𝜂



Summary

• Global convergence for nonlinear models is statistically intractable 
• ViOL: convergence to a local maximum with sample complexity that only depends 

on the model class complexity

• Check out our paper for more detail: https://arxiv.org/abs/2102.04168

Thank you for your attention J


