Provable Model-based Nonlinear Bandit and RL: Shelve Optimism, Embrace Virtual Curvature

Kefan Dong

Jiaqi Yang Tsinghua University

Tengyu Ma Stanford

Toward a Theory for Deep RL

Existing RL theory cannot apply to Neural Nets

• None of these give polynomial sample complexities for even one-layer NNs.

	B-Rank	B -Complete	W-Rank	Bilinear Class (this work)
Tabular MDP	\checkmark	\checkmark	\checkmark	\checkmark
Reactive POMDP [Krishnamurthy et al., 2016]	\checkmark	X	\checkmark	\checkmark
Block MDP [Du et al., 2019a]	\checkmark	×	\checkmark	\checkmark
Flambe / Feature Selection [Agarwal et al., 2020b]	\checkmark	×	\checkmark	\checkmark
Reactive PSR [Littman and Sutton, 2002]	\checkmark	×	\checkmark	\checkmark
Linear Bellman Complete [Munos, 2005]	X	\checkmark	X	\checkmark
Linear MDPs [Yang and Wang, 2019, Jin et al., 2020]	√!	\checkmark	√!	\checkmark
Linear Mixture Model [Modi et al., 2020b]	X	×	X	\checkmark
Linear Quadratic Regulator	X	\checkmark	X	\checkmark
Kernelized Nonlinear Regulator [Kakade et al., 2020]	X	×	X	\checkmark
Q [*] "irrelevant" State Aggregation [Li, 2009]	\checkmark	×	X	\checkmark
Linear Q^*/V^* (this work)	X	×	×	\checkmark
RKHS Linear MDP (this work)	X	×	X	\checkmark
RKHS Linear Mixture MDP (this work)	X	×	×	\checkmark
Low Occupancy Complexity (this work)	X	×	×	\checkmark
Q [*] State-action Aggregation [Dong et al., 2020]	X	×	×	×
Deterministic linear Q^* [Wen and Van Roy, 2013]	X	×	×	×
Linear Q^* [Weisz et al., 2020]	Sample efficiency is not possible			

Du, Simon S., et al. "Bilinear Classes: A Structural Framework for Provable Generalization in RL."

Neural Net Bandit: A Simplification

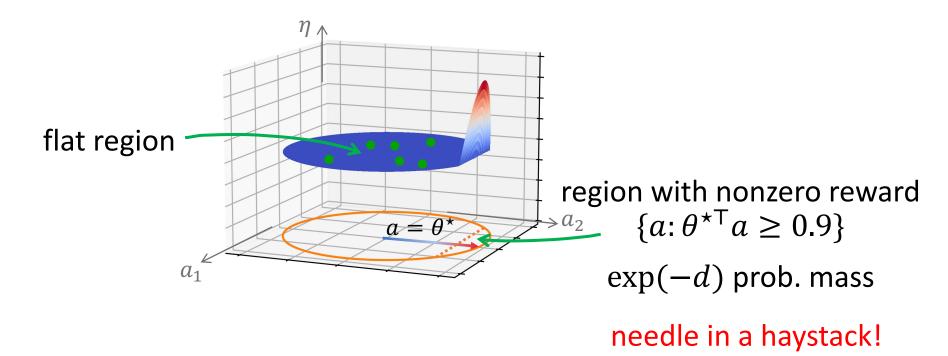
- Reward function $\eta(\theta, a)$
 - $\theta \in \Theta$: model parameter
 - $a \in \mathcal{A}$: continuous action
- Linear bandit: $\eta(\theta, a) = \theta^{\top} a$
- Neural net bandit: $\eta(\theta, a) = NN_{\theta}(a)$
- Realizable and deterministic reward setting:
 - Agent observes ground-truth reward $\eta(\theta^{\star}, a)$ after playing action a
- Goal: finding the best action

$$a^{\star} = \operatorname{argmax}_{a \in \mathcal{A}} \eta(\theta^{\star}, a)$$

Neural Net Bandit is **Statistically** Hard!

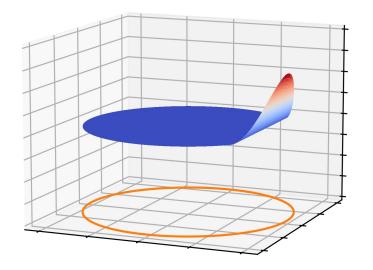
• Θ, \mathcal{A} : unit ℓ_2 -ball in \mathbb{R}^d

• $\eta(\theta, a) = \operatorname{relu}(\theta^{\top}a - 0.9), \quad a^* = \operatorname{argmax}_{\substack{||a||_2 \le 1}} \operatorname{relu}(\theta^{*\top}a - 0.9) = \theta^*$



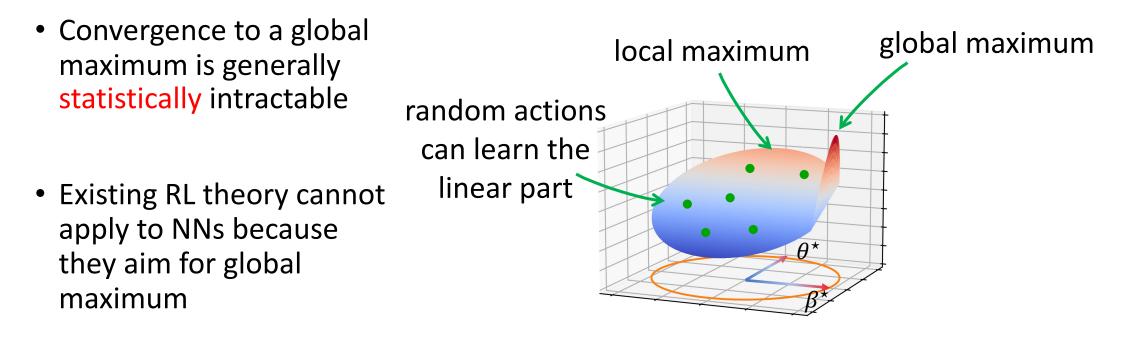
Neural Net Bandit is **Statistically** Hard!

- Θ , \mathcal{A} : unit ℓ_2 -ball in \mathbb{R}^d
- $\eta(\theta, a) = \operatorname{relu}(\theta^{\top}a 0.9)^2$



smoothed version

Neural Net Bandit is **Statistically** Hard!



$$\eta((\theta,\beta),a) = \theta^{\top}a + 20 \cdot \operatorname{relu}(\beta^{\top}a - 0.9)$$

needle in a haystack!

A New Paradigm for Bandit/RL

1. Convergences to local maxima for general instances

2. Analysis of the landscape of the true reward $\eta(\theta^*, \cdot)$

Main Results

• Theorem (informal): Under Lipschitz assumptions on η , there exists an algorithm that converges to a ϵ -approximate local maxima in $\tilde{O}(R(\Theta)\epsilon^{-8})$.

measures hardness of online learning w.r.t. model class

• Similar results for nonlinear RL (with many more assumptions and stochastic policies.)

Baseline: Zero-order Optimization for Bandit

- True reward $f(a) = \eta(\theta^*, a)$
- Zero-order optimization:
 - estimate gradient $\nabla f(a)$ by finite difference

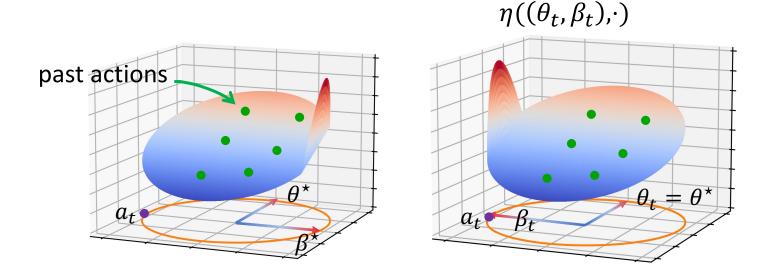
For
$$\xi \sim \mathcal{N}(0, I)$$
 and $\epsilon > 0$,
$$\frac{1}{\epsilon} \mathbb{E} \Big[\xi \Big(f(a + \epsilon \xi) - f(a) \Big) \Big] \approx \mathbb{E} [\xi \xi^\top \nabla f(a)] = \nabla f(a) \Big]$$

- $\Omega(d)$ sample complexity
- Our key idea: leverage model extrapolation

Model-based UCB Does Even Not Converge To Local Max $a_t, \theta_t = \underset{a \in \mathcal{A}, \theta \in \Theta_t}{\operatorname{Not}} \eta(\theta, a)$

confidence region

- Θ_t pins down θ^* but has no clue about β^*
- UCB keeps guessing β_t
- and choses $a_t = \beta_t$



 $\eta((\theta,\beta),a) = \theta^{\top}a + 20 \cdot \operatorname{relu}(\beta^{\top}a - 0.9)$

- UCB over-explores and doesn't converge in polynomial steps
- In partice, deep RL methods with optimism also over-explore

Reviewing the Analysis of UCB

1. Optimization (high virtual reward):

by optimism, $\eta(\theta_t, a_t) \ge \eta(\theta^*, a^*)$

2. Extrapolation (in average):

$$\sum_{t=1}^{T} \left(\eta(\theta_t, a_t) - \eta(\theta^*, a_t) \right)^2 \le \sqrt{\dim_E(\Theta) \cdot T}$$

Eluder dimension

- 1+2 $\Rightarrow \eta(\theta^{\star}, a_t) \rightarrow \eta(\theta^{\star}, a^{\star})$
- Step 2 fails for neural net models because $\dim_E(\Theta) \approx \exp(d)$

This result was independently proven in Li, Gene, Pritish Kamath, Dylan J. Foster, and Nathan Srebro. "Eluder Dimension and Generalized Rank."

Re-Prioritizing the Two Steps

1. Extrapolation by online learning (OL) oracles:

$$\mathbb{E}\left[\sum_{t=1}^{T} \left(\eta(\theta_t, a_t) - \eta(\theta^*, a_t)\right)^2\right] \le \sqrt{R(\Theta)} \operatorname{T polylog(T)}$$

OL oracle outputs a distribution of θ_t

Sequential Rademacher Complexity [Rakhlin-Sridharan-Tewari'15]

- For finite hypothesis Θ , $R(\Theta) = \log|\Theta|$
- For neural nets:

 $R(\Theta) = poly(d)$ vs. Eluder dim = exp(d)

or the weight norm

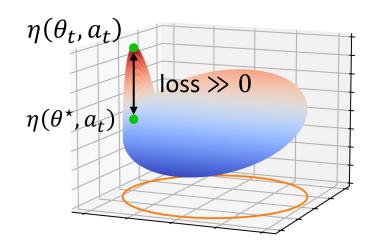
OL Oracle Extrapolates Optimally

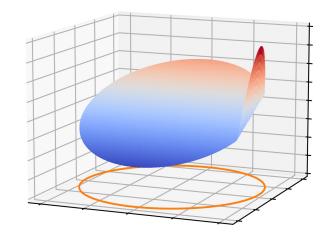
Extrapolation error:
$$\sum_{t=1}^{T} (\eta(\theta_t, a_t) - \eta(\theta^*, a_t))^2$$

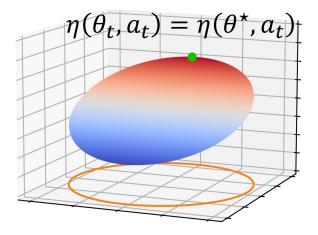
UCB: loss $\gg 0$

Ground truth

OL oracle: loss = 0 (for most of the times)







Re-Prioritizing the Two Steps

1. Extrapolation by online learning (OL) oracles

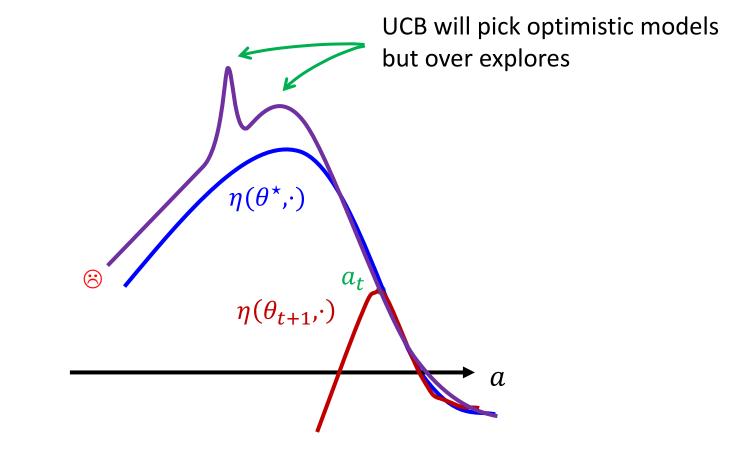
$$\mathbb{E}\left[\sum_{t=1}^{T} \left(\eta(\theta_t, a_t) - \eta(\theta^*, a_t)\right)^2\right] \le \sqrt{R(\Theta)T \text{ polylog}(T)}$$

2. High virtual reward:

best attempt:
$$a_t = \underset{a \in \mathcal{A}}{\operatorname{argmax}} \mathbb{E}[\eta(\theta_t, a)]$$

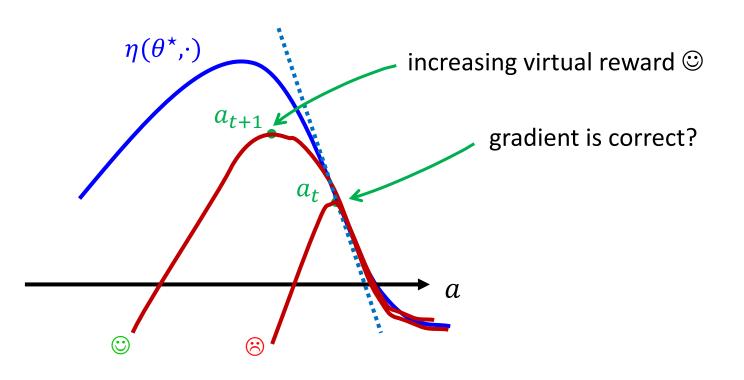
 $\eta(\theta^*, \cdot)$
 $getting stuck \otimes$
 $(\operatorname{lack of optimism})$
 $\eta(\theta_{t+1}, \cdot)$
 a_t
 a_{t-1}
 a_t
 a_t

Re-Prioritizing the Two Steps



Embrace Virtual Curvature

- Need the online learner to work harder to guarantee an increasing virtual reward
- Estimating the curvature: learn θ_t such that
 - 1. $\eta(\theta_t, a_t) \approx \eta(\theta^*, a_t)$
 - 2. $\nabla_a \eta(\theta_t, a_t) \approx \nabla_a \eta(\theta^*, a_t)$
 - 3. $\nabla_a^2 \eta(\theta_t, a_t) \approx \nabla_a^2 \eta(\theta^*, a_t)$



Virtual Improvements With Curvature Estimates

• Assume $\eta(\theta, \cdot)$ is smooth (with bounded 2nd derivative) • $\eta(\theta^*, a_{t+1}) \approx \mathbb{E}_{\theta_{t+1}}[\eta(\theta_{t+1}, a_{t+1})]$ OL guarantee $\geq \mathbb{E}_{\theta_{t+1}}[\eta(\theta_{t+1}, a_t)] + \Omega(||\mathbb{E}_{\theta_{t+1}}[\nabla \eta(\theta_{t+1}, a_t)]||_2^2)$ $\approx \eta(\theta^*, a_t) + \Omega(||\nabla \eta(\theta^*, a_t)||_2^2)$

 $\eta(\theta^{\star}, \cdot)$ increasing virtual reward \odot a_{t+1} gradient is correct a_t a_t "descent lemma":

 $\max_{a} f(a) \ge f(a_0) + \Omega(||\nabla f(a_0)||_2^2)$

Virtual Improvements With Curvature Estimates

• Consider online learning problem with the idealized $\overline{\ell}_t$

$$\overline{\ell}_t(\theta) = \left(\eta(\theta, a_t) - \eta(\theta^*, a_t) \right)^2 + \left(\eta(\theta, a_{t-1}) - \eta(\theta^*, a_{t-1}) \right)^2$$
$$+ ||\nabla \eta(\theta, a_{t-1}) - \nabla \eta(\theta^*, a_{t-1})||_2^2$$

• ViOL (Virtual Ascent with Online Model Learner) 1 Use OL to minimize losses $\overline{\ell}$. (assuming $\overline{\ell}$, is accessible) and

- 1. Use OL to minimize losses $\overline{\ell}_t$ (assuming $\overline{\ell}_t$ is accessible) and get a distribution of θ_t
- 2. Take $a_t = \operatorname{argmax}_a \mathbb{E}_{\theta_t}[\eta(\theta_t, a)]$

Lemma: If online learning for
$$\overline{\ell}_t$$
 has regret

$$\mathbb{E}\left[\sum_{t=1}^T \overline{\ell}_t \left(\theta_t\right) - \min_{\theta} \sum_{t=1}^T \overline{\ell}_t \left(\theta\right)\right] = \mathbb{E}\left[\sum_{t=1}^T \overline{\ell}_t \left(\theta_t\right)\right] = o(T)$$
Then a_t converges to a critical point of the reward $n(\theta^*, \cdot)$

Learning Gradients With Model Extrapolation

$$\overline{\ell}_{t}(\theta) = \left(\eta(\theta, a_{t}) - \eta(\theta^{\star}, a_{t})\right)^{2} + \left(\eta(\theta, a_{t-1}) - \eta(\theta^{\star}, a_{t-1})\right)^{2} + \left|\left|\nabla \eta(\theta, a_{t-1}) - \nabla \eta(\theta^{\star}, a_{t-1})\right|\right|_{2}^{2}$$

not observed

- $||\nabla \eta(\theta, a) \nabla \eta(\theta^*, a)||_2^2 = \mathbb{E}_u[\langle \nabla \eta(\theta, a) \nabla \eta(\theta^*, a), u \rangle^2]$ where $u \sim \mathcal{N}(0, I)$
- Directional gradient $\langle \nabla \eta(\theta^{\star}, a), u \rangle$ can be computed by two actions

$$\langle \nabla \eta(\theta^{\star}, a), u \rangle \approx \frac{\eta(\theta^{\star}, a + \alpha u) - \eta(\theta^{\star}, a)}{\alpha} \quad (\alpha \to 0)$$

- Similarly to Johnson–Lindenstrauss, it requires complexity(Θ) samples of u.
- Zero order optimization requires $\Omega(d)$ samples.

Algorithm and Theorem

$$\begin{aligned} \boldsymbol{\ell}_{t}(\boldsymbol{\theta}) &= \left(\boldsymbol{\eta}(\boldsymbol{\theta}, \boldsymbol{a}_{t}) - \boldsymbol{\eta}(\boldsymbol{\theta}^{\star}, \boldsymbol{a}_{t}) \right)^{2} + \left(\boldsymbol{\eta}(\boldsymbol{\theta}, \boldsymbol{a}_{t-1}) - \boldsymbol{\eta}(\boldsymbol{\theta}^{\star}, \boldsymbol{a}_{t-1}) \right)^{2} \\ &+ \langle \nabla \boldsymbol{\eta}(\boldsymbol{\theta}, \boldsymbol{a}_{t-1}) - \nabla \boldsymbol{\eta}(\boldsymbol{\theta}^{\star}, \boldsymbol{a}_{t-1}), \boldsymbol{u}_{t} \rangle^{2} \end{aligned}$$

- ViOL (Virtual Ascent with Online Model Learner)
- 1. Sample $u_t \sim \mathcal{N}(0, I)$
- 2. Use OL to minimize losses ℓ_t and get a distribution of θ_t
- 3. Take $a_t = \operatorname{argmax}_a \mathbb{E}_{\theta_t}[\eta(\theta_t, a)]$
- Theorem (informal): Under Lipschitz assumptions on η , ViOL converges to a ϵ -approximate local maxima in $\tilde{O}(R(\Theta)\epsilon^{-8})$.

Instantiations

- Linear bandit with structured model family: $\eta(\theta, a) = \theta^{T} a$
 - Θ is finite: poly(log $|\Theta|$) sample complexity
 - Θ contains *s*-sparse vectors: poly(*s*, log *d*) sample complexity
 - local maximum are global because $\eta(\theta^{\star}, \cdot)$ is concave.
 - only hold for deterministic reward
- Neural net bandit: $\eta(W, a) = w_2^{\mathsf{T}} \sigma(W_1 a)$
 - assume O(1) norms bounds on $||w_2||_1$, $||W_1||_{\infty \to \infty}$
 - $R(W) \leq \tilde{O}(1)$
 - sample complexity for local max = $\tilde{O}(1)$
 - Local maximum are global for input-concave neural nets

First-cut Extension to RL

RL	Bandit with Continous Actions		
Dynamics T_{θ}	Model parameter θ		
Policy $\pi_{oldsymbol{\psi}}$	Action a		
Total return $\eta(T_{ heta}, \pi_{\psi})$	Reward function $\eta(\theta, a)$		

- Caveat: { $\eta(T_{\theta}, \cdot)$: $\theta \in \Theta$ } has high complexity
- A result for stochastic policies (with many Lipschitz conditions) $\begin{aligned} &|\eta(\theta,\psi) - \eta(\theta^{\star},\psi)|^{2} \leq \mathbb{E}_{s,a\sim T_{\theta^{\star}},\pi_{\psi}}[\|T_{\theta}(s,a) - T_{\theta^{\star}}(s,a)\|^{2}] \\ &\|\nabla\eta(\theta,\psi) - \nabla\eta(\theta^{\star},\psi)\|^{2} \leq \mathbb{E}_{s,a\sim T_{\theta^{\star}},\pi_{\psi}}[\|T_{\theta}(s,a) - T_{\theta^{\star}}(s,a)\|^{2}] \end{aligned}$
- Summary: online learning T_{θ} implies predicting the curvature of η

Summary

- Global convergence for nonlinear models is statistically intractable
- ViOL: convergence to a local maximum with sample complexity that only depends on the model class complexity
- Check out our paper for more detail: https://arxiv.org/abs/2102.04168

Thank you for your attention 🙂