Provable Model-based Nonlinear Bandit and RL:
Shelve Optimism, Embrace Virtual Curvature

Kefan Dong

Jiagi Yang Tengyu Ma
Tsinghua University Stanford

Toward a Theory for Deep RL

Existing RL theory cannot apply to Neural Nets

* None of these give polynomial sample complexities for even one-layer NNs.

B-Rank | B-Complete | W-Rank | Bilinear Class (this work)

Tabular MDP
Reactive POMDP [Krishnamurthy et al., 2016]
Block MDP [Du et al., 2019a]

Flambe / Feature Selection [Agarwal et al., 2020b]
Reactive PSR [Littman and Sutton, 2002]
Linear Bellman Complete [Munos, 2005]

Linear MDPs [Yang and Wang, 2019, Jin et al., 2020]
Linear Mixture Model [Modi et al., 2020b]
Linear Quadratic Regulator
Kernelized Nonlinear Regulator [Kakade et al., 2020]
@™ “irrelevant” State Aggregation [Li, 2009]
Linear Q*/V™* (this work)

RKHS Linear MDP (this work)

RKHS Linear Mixture MDP (this work)

Low Occupancy Complexity (this work)

()™ State-action Aggregation [Dong et al., 2020]
Deterministic linear Q* [Wen and Van Roy, 2013]

Linear Q* [Weisz et al., 2020] | Sample efficiency is not possible

IR R IR R R AN R R N R I AN AN AN ANAN
R R IR R R R AN R AN ENE R R IR AN
R R IR I R R R R A N R I EN ENENENEN
I R BN A A A AN A A A A A A A AN AR

Du, Simon S., et al. "Bilinear Classes: A Structural Framework for Provable Generalization in RL."

Neural Net Bandit: A Simplification

Reward function (6, a)
e 0 € ©: model parameter
* a € A: continuous action

Linear bandit: n(6,a) = 8'Ta
Neural net bandit: n(6,a) = NNg(a)

Realizable and deterministic reward setting:

 Agent observes ground-truth reward n(8%, a) after playing action a

Goal: finding the best action
a* = argmax,c 4 n(6%, a)

Neural Net Bandit is Statistically Hard!

* 0,A: unit £,-ball in R4
* n(0,a) =relu(@'a—0.9), a*=argmaxrelu(6*'a—0.9)=0"

lallz=1
]

flat region — .w

[region with nonzero reward
=% {a:0*Ta > 0.9}

exp(—d) prob. mass

needle in a haystack!

Neural Net Bandit is Statistically Hard!

* O, A: unit £,-ball in R4
* n1(8,a) =relu(0"a — 0.9)?

smoothed version

Neural Net Bandit is Statistically Hard!

. .
Con\./ergen-ce to a global ocal maximum global maximum
maximum is generally

statistically intractable 5 n40m actions \ F
can learn the .

« Existing RL theory cannot linear part . © ’

apply to NNs because y
they aim for global VQ _
maximum \E—;//

n((0,8),a) =0"a+ 20 relu(B"a— 0.9

needle in a haystack!

A New Paradigm for Bandit/RL

1. Convergences to local maxima for general instances =) This talk

2. Analysis of the landscape of the true reward n(8*,-)

Main Results

* Theorem (informal): Under Lipschitz assumptions on 7, there exists an algorithm

that converges to a e-approximate local maxima in O(R(®)e~®).
S——

measures hardness of online
learning w.r.t. model class

 Similar results for nonlinear RL (with many more assumptions and stochastic
policies.)

Baseline: Zero-order Optimization for Bandit

* True reward f(a) = n(0*, a)

e Zero-order optimization:
* estimate gradient Vf (a) by finite difference

For & ~ N(O [)and € > 0,
—E[f(f(a+€€) f(@))| = E[§€TVf(a)] = Vf(a)

* 0(d) sample complexity

* Our key idea: leverage model extrapolation

Model-based UCB Does Even Not Converge To

Local Max
a;, 0; = argmax n(0,a)
aEJl,HE@t
confidence region
O, pins down 8* but has past actions [
no clue about B* == . A1

UCB keeps guessing [5;
and choses a; = f;

e [)
| —
-
3 ¢ Z

L :
\VJ

n((6: Be),)

A

——

AL ¥ f;

et

V-

t:9* |

n((8,8),a) =0"a+ 20 -relu(B"a — 0.9)

UCB over-explores and doesn’t converge in polynomial steps
In partice, deep RL methods with optimism also over-explore

Reviewing the Analysis of UCB

1. Optimization (high virtual reward):
by optimism, n(0;,a;) = n(0*,a*)

2. Extrapolation (in average):
2 .
T_1(n6ar) —n(0*ay))” < /dimg(©) - T

Eluder dimension

e 1+2 = n(@%a;) »n(d*%a")
* Step 2 fails for neural net models because dimg(0) = exp(d)

This result was independently proven in Li, Gene, Pritish Kamath, Dylan J. Foster, and Nathan Srebro. "Eluder Dimension and Generalized Rank."

Re-Prioritizing the Two Steps

1. Extrapolation by
. 2
E [{:1(77(915: a;) —n(o%, at))] = \/R(@)T polylog(T)

S AN

OL oracle outputs a distribution of 6, Sequential Rademacher Complexity
[Rakhlin-Sridharan-Tewari’15]

* For finite hypothesis ©, R(0) = log| 0|
* For neural nets:
R(O®) =poly(d) vs. Eluderdim =exp(d)

Rakhlin, Alexander, Karthik Sridharan, and Ambuj Tewari. "Online learning via sequential complexities.” 2015.

OL Oracle Extrapolates Optimally

Extrapolation error: Z{zl(n (6¢,a;) —n(67, at))z

UCB: loss > 0 Ground truth OL oracle: loss =0
(for most of the times)

n(0¢, ar) ' i n(@¢ar) =007, ap)

loss > 0 [A I b

t —t

n (9*1 at)

_ = =

Re-Prioritizing the Two Steps

1. Extrapolation by
. 2
E |21zt (n(0c,) = n(6%,a0))”| < VR(O)T polylog(T)

2. High virtual reward:

best attempt: a; = argmax E[n(6;, a)]
aeA

getting stuck ®

(lack of optimism)

Re-Prioritizing the Two Steps

UCB will pick optimistic models

<« _— but over explores

Embrace Virtual Curvature

* Need the online learner to work harder to guarantee an increasing virtual reward

* Estimating the curvature: learn 8; such that
1. n(@nay) =n(0%, ar)
2. Van(8g ar) = Van (07, ar)
3. Van(6ar) =~ Vgn(6*,ar) n(6~,)

increasing virtual reward ©

gradient is correct?

Virtual Improvements With Curvature Estimates

* Assume 1(6,-) is smooth (with bounded 2" derivative)
* (0%, ary1) = IE‘:6?tJ,1[77(9t+1; Ary1)]
OL guarantee< = [E9t+1 [77 (9t+1r at)] + 'Q'(l |[E9t+1 [VU (0t+1r at)] | |%)

~ 0(6%,a) + (V@ adl)

n(e*,") ’ : o “descent lemma”:
’ % increasing virtual reward ©

max f(@) = f(ap) + Q(|Vf (ap)|]3)

gradient is correct

Virtual Improvements With Curvature Estimates

* Consider online learning problem with the idealized ?t

2.(0) = (n(6,a,) —n(6*,a))” + (N6, ar_y) — (6% a_1))
+]|1Vn(0, ar—1) — Vn(0*, ar_)||5

8 ViOL (Virtual Ascent with Online Model Learner)
1. Use OL to minimize losses £, (assuming ¥, is accessible) and get a distribution of 8,
Take a; = argmax, Eg, [1(0;, a)]

2.
\

Lemma: If online learning for ?t has regret
E[27-1 2 () — min X1_, 2 (6)| = E[Z7-, 2 (61)] = o(T)
Then a; converges to a critical point of the reward n(687,-)

Learning Gradients With Model Extrapolation

2,(0) = (n(6,a)) —n(6*,a))” + (N6, ar_1) — (0% a_1))"

+[|Vn(6, ar_1) — Vn(6*, a;_)||3
Rf_/

not observed
* |IVn(8,a) — (6™, a)|15 = Ey[{Vn(8,a) — (6%, a),u)*]
whereu ~ N'(0,1)
* Directional gradient (Vn(8™, a), u) can be computed by two actions
n@*,a+au) —n(6* a)

(Vn(6%,a),u) = - (a - 0)

* Similarly to Johnson—Lindenstrauss, it requires complexity(®) samples of wu.

 Zero order optimization requires Q(d) samples.

Algorithm and Theorem

'gt(e) = (T](H' at) T 77(9*' at))z + (77(9' at—l) o 77(9*: at—l))z
+(Vn(0, ar—1) — Vn (0%, ar_1), us)?

e VioL (Virtual Ascent with Online Model Learner))
1. Sample u; ~ N (0,1)

2. Use OL to minimize losses ¥ and get a distribution of 6,

\3. Take a; = argmax, Eg, [1(6, a)] .

* Theorem (informal): Under Lipschitz assumptions on 7, ViOL converges to a e-
approximate local maxima in O (R(©®)e~9).

Instantiations

e Linear bandit with structured model family:n(8,a) = 8 "a
* O is finite: poly(log |®]) sample complexity
* O contains s-sparse vectors: poly(s,log d) sample complexity
* local maximum are global because n(6*,) is concave.
* only hold for deterministic reward

* Neural net bandit: n(W, a) = w, o(W;a)
« assume 0 (1) norms bounds on |[wy||1, W1l co—0
« R(W) < 0(1)
* sample complexity for local max = 0(1)
* Local maximum are global for input-concave neural nets

First-cut Extension to RL

Dynamics Ty Model parameter 0
Policy 1y, Action a
Total return n(Tg, nlp) Reward function 77(6, a)

 Caveat: {n(Ty,"): 6 € O} has high complexity
* Aresult for stochastic policies (with many Lipschitz conditions)

70, %) = n(0* Y2 S Eggur,, m, [ITo(s, @) — Tgr (s, @)|I?]
IVvn(0,¥) — V(8" WII* S Es gty [ITa (s, @) — Tox (s,)1I?]
* Summary: online learning Ty implies predicting the curvature of n

Ssummary

* Global convergence for nonlinear models is statistically intractable

* ViOL: convergence to a local maximum with sample complexity that only depends
on the model class complexity

* Check out our paper for more detail: https://arxiv.org/abs/2102.04168

Thank you for your attention ©

